	REVISIONS		
LTR	DESCRIPTION	DATE (YR-MO-DA)	APPROVED
А	Correct I _{AM,100%} and I _{AM,RAM} values in Table I PHN	15-01-26	Thomas M. Hess
В	Correct Vendor part number in section 6.3. phn	15-08-25	Thomas M. Hess
С	Update boilerplate paragraphs to current VID description requirements. - PHN	22-03-28	Muhammad A. Akbar

CURRENT DESIGN ACTIVITY CAGE CODE 16236 HAS CHANGED NAMES TO: DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990

Prepared in accordance with ASME Y14.24

Vendor Item Drawing

Revision Statu	evision Status of Sheets																						
REV	С	С	С	С	С	С	С	С															
SHEET	23	24	25	26	27	28	29	30															
REV	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	
SHEET	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	
PMIC N/A	N/A PREPARED BY DEFENSE SUP Phu H. Nguyen COLUMB						PPLY CENTER, COLUMBUS BUS, OHIO 43218-3990																
Original date of drawing CHECKED BY						TITLE																	
					Pł	nu H.	Nguy	yen			MICF	ROCI	IRCL	ЛТ, E	DIGI	ΓAL,	MIX	ED S	GN	GNAL			
YY MM	N DD		1	APPR	OVE	D BY	,				MICF	ROC	ONT	RÓL	LER	S, N	10N(OLITI	HIC	SILIC	CON	1	
14-12	2-22				The	omas	M. H	less															
	SIZE CAGE CODE				DWG NO.																		
	A 16236				V62/14644																		
REV C					PAG	E	1	OF	30														

1. SCOPE

1.1 <u>Scope</u>. This drawing documents the general requirements of a high performance mixed signal microcontrollers microcircuit, with an operating temperature range of -55°C to +85°C.

1.2 <u>Vendor Item Drawing Administrative Control Number</u>. The manufacturer's PIN is the item of identification. The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation:

Outline letter	Number of pins	JEDEC PUB 95	Package style
х	40	JEDEC MO-220	Plastic quad Flatpack no-lead

1.2.3 Lead finishes. The lead finishes are as specified below or other lead finishes as provided by the device manufacturer:

Finish designator	Material
A B C D E F	Hot solder dip Tin-lead plate Gold plate Palladium Gold flash palladium Tin-lead alloy
Z	Other

DLA LAND AND MARITIME	SIZE A	CA	GE CODE 16236	DWG NO. V62/14644		
COLUMBUS, OHIO		REV	С	PAGE 2		

	Voltage applied at V _{CC} to V _{SS} Voltage applied to any pin (excluding VCORE) Maximum diode current at any device pin Maximum junction temperature, T _J	-0.3 V to 4.1 V -0.3 V to V _{CC} + 0.3 ±2 mA 95°C	V	<u>2</u> /	
	Storage temperature range, T _{stg}	-55°C to 125°C	<u>3</u> /	<u>4</u> /	<u>5</u> /
1.4	Recommended operating conditions. <u>6</u> /				
	Supply voltage during program execution and FRAM programming (AVCC = DVCC) Supply voltage (AVSS = DVSS), V_{SS}	2.0 V to 3.6 V 0 V TYP	<u>7</u> /		
	Operating free air temperature, TJ	-55°C to 85°C			
	Typical required capacitor at VCORE, C _{VCORE}	470 nF <u>8</u> /			
	Minimum capacitor ratio of VCC to VCORE, Cvcc/Cvcore	10 pF			
	Processor frequency (maximum MCLK frequency), f _{SYSTEM} 9/:				
	No FRAME wait states, <u>10</u> / $2V \le V_{CC} \le 3.6 V$	0 MHz to 8.0 MHz			
	With FRAME wait state, <u>10</u> /:				
	NACCESS = $\{2\}$,				

2. APPLICABLE DOCUMENTS

JEDEC – SOLID STATE TECHNOLOGY ASSOCIATION (JEDEC)

JEP95	-	Registered and Standard Outlines for Semiconductor Devices.
JESD J-STD020	_	Standard for moisture/reflow sensitivity classification for nonhermetric solid state surface mount
		devices.

(Copies of these documents are available online at https://www.jedec.org).

 $\underline{8}$ A capacitor tolerance of $\pm 20\%$ or better is required.

10/ When using manual wait state control, see the MSP430FR57xx Family User's Guide (SLAU272) from manufacturer data sheet for recommended settings for common system frequencies.

DLA LAND AND MARITIME	SIZE A	CA	GE CODE 16236	DWG NO. V62/14644		
COLUMBUS, OHIO		REV	С	PAGE 3		

<u>1</u>/ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

^{2/} All voltages referenced to VSS. VCORE is for internal device use only. No external DC loading or voltage should be applied.

 ^{3/} Data retention on FRAM memory cannot be ensured when exceeding the specified maximum storage temperature, Tstg.
 4/ For soldering during board manufacturing, it is required to follow the current JEDEC J-STD-020 specification with peak reflow

temperatures not higher than classified on the device label on the shipping boxes or reels.

^{5/} Programming of devices with user application code should only be performed after reflow or hand soldering. Factory programmed information, such as calibration values, are designed to withstand the temperatures reached in the current JEDEC J-STD-020 specification.

^{6/} Typical values are specified at VCC = 3.3 V and TA = 25°C (unless otherwise noted).

<u>I</u>/ It is recommended to power AVCC and DVCC from the same source. A maximum difference of 0.3 V between AVCC and DVCC can be tolerated during power up and operation.

<u>9</u>/ Modules may have a different maximum input clock specification. See the specification of the respective module in the manufacturer data sheet.

3. REQUIREMENTS

3.1 <u>Marking</u>. Parts shall be permanently and legibly marked with the manufacturer's part number as shown in 6.3 herein and as follows:

- A. Manufacturer's name, CAGE code, or logo
- B. Pin 1 identifier
- C. ESDS identification (optional)

3.2 <u>Unit container</u>. The unit container shall be marked with the manufacturer's part number and with items A and C (if applicable) above.

3.3 <u>Electrical characteristics</u>. The maximum and recommended operating conditions and electrical performance characteristics are as specified in 1.3, 1.4, and table I herein.

3.4 <u>Design, construction, and physical dimension</u>. The design, construction, and physical dimensions are as specified herein.

3.5 Diagrams.

- 3.5.1 <u>Case outline</u>. The case outline shall be as shown in 1.2.2 and figure 1.
- 3.5.2 <u>Terminal connections</u>. The terminal connections shall be as shown in figure 2.
- 3.5.3 <u>Functional block diagram</u>. The functional block diagram shall be as shown in figure 3.
- 3.5.4 <u>Typical Active mode supply currents, No Wait states</u>. The typical Active mode supply currents, No Wait states shall be as shown in figure 4.
- 3.5.5 <u>Typical Low-Level Output Current vs Low-Level Output Voltage</u>, $V_{CC} = 2.0 V$. The typical Low-Level Output Current vs Low-Level Output Voltage, $V_{CC} = 2.0 V$ shall be as shown in figure 5.
- 3.5.6 <u>Typical Low-Level Output Current vs Low-Level Output Voltage</u>, $V_{CC} = 3.0 \text{ V}$. The typical Low-Level Output Current vs Low-Level Output Voltage, $V_{CC} = 3.0 \text{ V}$ shall be as shown in figure 6.
- 3.5.7 <u>Typical High-Level Output Current vs High-Level Output Voltage</u>, $V_{CC} = 2.0 V$. The Typical High-Level Output Current vs High-Level Output Voltage, $V_{CC} = 2.0 V$ shall be as shown in figure 7.
- 3.5.8 <u>Typical High-Level Output Current vs High-Level Output Voltage</u>, $V_{CC} = 3.0 \text{ V}$. The Typical High-Level Output Current vs High-Level Output Voltage, $V_{CC} = 3.0 \text{ V}$ shall be as shown in figure 8.
- 3.5.9 <u>SPI Master mode, CKPH = 0</u>. The SPI Master mode, CKPH = 0 shall be as shown in figure 9.
- 3.5.10 <u>SPI Master mode, CKPH = 1</u>. The SPI Master mode, CKPH = 0 shall be as shown in figure 10.
- 3.5.11 <u>SPI Slave mode, CKPH = 0</u>. The SPI Slave mode, CKPH = 0 shall be as shown in figure 11.
- 3.5.12 <u>SPI Slave mode, CKPH = 1</u>. The SPI Slave mode, CKPH = 0 shall be as shown in figure 12.
- 3.5.13 <u>I2C Mode timing</u>. The I2C mode timing shall be as shown in figure 13.
- 3.5.14 <u>Typical temperature sensor voltage</u>. The typical temperature sensor voltage shall be as shown in figure 14.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CAC	GE CODE 16236	DWG NO. V62/14644		
		REV	С	PAGE 4		

Test	Execution	Vcc	Frequency (f _{MCLK} = f _{SMCLK})							<u>5</u> /			Unit		
	Memory		1 M	1 MHz 4 MHz		8 N	1Hz	16 N	ЛНz	20 MHz		24 MHz			
			Тур	Max	Тур	Max	Тур	Max	Тур	Max	Тур	Max	Тур	Max	
Active Mode	Active Mode Supply Current Into VCC Excluding External Current 2/ 3/ 4/ 5/														
Iam, fram_uni <u>7</u> /	FRAM	3 V	0.27		0.58		1.0		1.53		1.9		2.2		mA
I _{AM,0%} <u>8</u> /	FRAM 0% cache hit ratio	3 V	0.42	0.75	1.2	1.7	2.2	2.9	2.3	3.0	2.8	3.7	3.45	4.3	
I _{AM,50%} <u>8/9</u> /	FRAM 50% cache hit ratio	3 V	0.31		0.73		1.3		1.75		2.1		2.5		
Iам,66% <u>8</u> / <u>9</u> /	FRAM 66% cache hit ratio	3 V	0.27		0.58		1.0		1.55		1.9		2.2		
Iам,75% <u>8</u> / <u>9</u> /	FRAM 75% cache hit ratio	3 V	0.25		0.5		0.82		1.3		1.6		1.8		
Iam,100% <u>8</u> / <u>9</u> /	FRAM 100% cache hit ratio	3 V	0.2	0.44	0.3	0.56	0.42	0.81	0.73	1.17	0.88	1.32	1.0	1.53	
Іам, кам <u>9</u> / <u>10</u> /	RAM	3 V	0.2	0.41	0.35	0.56	0.55	0.77	1.0	1.27	1.20	1.47	1.45	1.8	

Test	Symbol	Vcc	-55	°C	25	°C	85	°C	Unit	
			Тур	Max	Тур	Max	Тур	Max		
Low-Power Mode Supply Currents (Into VCC) Excluding External Current <u>11</u> / <u>3</u> / <u>4</u> /										
Low power mode 0 <u>12</u> / <u>13</u> /	LPM0, 1MHz	2 V, 3 V	166		175		225		μA	
Low power mode 0 <u>13</u> / <u>14</u> /	LPM0, 8MHz	2 V, 3 V	170		177	244	225	360		
Low power mode 0 <u>13</u> / <u>15</u> /	ILPM0, 24MHz	2 V, 3 V	274		285	340	340	455		
Low power mode 2 <u>16</u> / <u>17</u> /	ILMP2	2 V, 3 V	56		61	80	110	210		
Low power mode 3, crystal mode	ILMP3, XT1LF	2 V, 3 V	3.4		6.4	15	48	150		
<u>17</u> / <u>18</u> /										
Low power mode 3, VLO mode	ILPM3,VLO	2 V, 3 V	3.3		6.3	15	48	150		
<u>17/ 19/</u>										
Low power mode 4 <u>17/ 20</u> /	I _{LPM4}	2 V, 3 V	2.9		5.9	15	48	150		
Low power mode 3.5 <u>21</u> /	LPM3.5	2 V, 3 V	1.3		1.5	2.2	2.8	5.0		
Low power mode 4.5 <u>22</u> /	LPM4.5	2 V, 3 V	0.3		0.32	0.66	0.57	2.55		

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CA	GE CODE 16236	DWG NO. V62/14644		
		REV	С	PAGE 5		

Test	Symbol	Test conditions V _{CC}		Limits			Unit
		<u>11</u> /		Min	Тур	Max	
Schmitt-Trigger Inputs – General F	Purpose I/C)					
(P1.0 to P1.7, P2.0 to P2.7, P3.0 to	P3.7, P4.0	to P4.1, PJ.0 to PJ.5, RST/NMI)				
Positive going input threshold	V _{IT+}		2 V	0.7		1.7	V
voltage			3 V	1.45		2.12	
Negative going input threshold	V _{IT-}		2 V	0.41		1.101	
voltage			3 V	0.72		1.68	
Input voltage hysteresis (V _{IT+} - V _{IT-})	V _{hys}		2 V	0.24		0.855	
			3 V	0.27		1.02	
Pull up or pull down resistor	R _{Pull}	For pullup: V _{IN} = V _{SS} For pulldown: V _{IN} = V _{CC}		19	35	51	kΩ
Input capacitance	Cı				5		pF
Inputs – Ports P1 and P2 (P1.0 to	P1.7, P2.0	to P2.7) <u>23</u> /	L				
External interrupt timing <u>24</u> /	t(int)	External trigger pulse duration to set interrupt flag	2 V, 3V	20			ns
Leakage Current – General Purpos (P1.0 to P1.7, P2.0 to P2.7, P3.0 to	se I/O P3.7, P4.0	to P4.1, PJ.0 to PJ.5, RST/NMI)				
High-impedance leakage current		<u>25</u> / <u>26</u> /	2 V, 3 V	-65		65	nA
Outputs – General Purpose I/O (P1.0 to P1.7, P2.0 to P2.7, P3.0 to	P3.7, P4.0	to P4.1, PJ.0 to PJ.5)					
		I _(OHmax) = -1 mA <u>27</u> /	2 V	Vcc - 0.25		Vcc	V
High level output voltage	Voh	$I_{(OHmax)} = -3 \text{ mA}$ <u>28</u> /		V _{CC} - 0.60		Vcc	
		$I_{(OHmax)} = -2 \text{ mA} \underline{27}/$	3 V	Vcc – 0.25		Vcc	
		$I_{(OHmax)} = -6 \text{ mA}$ <u>28</u> /		V _{CC} – 0.60		Vcc	
		I _(OLmax) = 1 mA <u>27</u> /	2 V	Vss		Vss + 0.25	
Low level output voltage	Vol	I _(OLmax) = 3 mA <u>28</u> /		Vss		V _{SS} + 0.60	
		$I_{(OLmax)} = 2 \text{ mA} \underline{27}/$	3 V	Vss		Vss + 0.25	
		$I_{(OLmax)} = 6 \text{ mA} \underline{28}/$		Vss		V _{SS} + 0.60	
Output Frequency – General Purp (P1.0 to P1.7, P2.0 to P2.7, P3.0 to	ose I/O P3.7. P4.0	to P4.1. PJ.0 to PJ.5)					
Port output frequency (with load)	f _{Px.v}	Px.y 29/ 30/	2 V			16	MHz
			3 V			24	
Clock output frequency	fPort_CLK	ACLK, SMCLK, or MCLK at configured output port,	2 V			16	
		C MHz L = 20 pF, no DC loading <u>30</u> /	3 V			24	

DLA LAND AND MARITIME	SIZE	CAG	E CODE	DWG NO.
	A	1	6236	V62/14644
COLUMBUS, OHIO		REV	С	PAGE 6

	TABLE I. <u>EI</u>	ectrical performance characteristics - Co	ntinued.	<u>1</u> /			
Test	Symbol	Test conditions	Vcc	Vcc L			Unit
		<u>11</u> /		Min	Тур	Max	
Crystal Oscillator, XT1, Low-Fre	quency (LF) Mode <u>31</u> /					
Additional current consumption	ΔIvcc.lf	f_{OSC} = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVE = {1}, C _{L,eff} = 9 pF, T _A = 25°C,	3 V		60		nA
XT1 LF mode from lowest drive setting		f_{OSC} = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVE = {2}, T _A = 25°C, C _{L,eff} = 9 pF	3 V		90		
		fosc = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVE = {3}, T _A = 25°C, C _{L,eff} = 12 pF	3 V		140		
XT1 oscillator crystal frequency, LF mode	fxt1,lf0	XTS = 0, XT1BYPASS = 0			32768		Hz
XT1 oscillator logic-level square- wave input frequency, LF mode	fxt1,lf,sw	XTS = 0, XT1BYPASS = 1 <u>32</u> / <u>33/</u>		10	32.768	50	kHz
Oscillation allowance for LF	OA _{LF}	XTS = 0, XT1BYPASS = 0, XT1DRIVE = {0}, f _{XT1,LF} = 32768 Hz, C _{L,eff} = 6 pF			210		kΩ
crystals <u>34</u> /		XTS = 0, XT1BYPASS = 0, XT1DRIVE = {3}, f _{XT1,LF} = 32768 Hz, C _{L,eff} = 12 pF			300		
Duty cycle, LF mode		XTS = 0, Measured at ACLK, $f_{XT1,LF}$ = 32768 Hz		30		70	%
Oscillator fault frequency, LF mode <u>35</u> /	f _{Fault,LF}	XTS = 0 <u>36</u> /		10		10000	Hz
Startup time, LF mode <u>37</u> /	tstart,lf	f _{OSC} = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVE = {0}, T _A = 25°C, C _{L,eff} = 6 pF	3 V		1000		ms
		fOSC = 32768 Hz, XTS = 0,			1000]

XT1BYPASS = 0, XT1DRIVE = {3},

 $T_A = 25^{\circ}C, C_{L,eff} = 12 \text{ pF}$

XTS = 0

 $C_{\text{L,eff}}$

kHz

pF

1

See footnote at end of table.

Integrated effective load capacitance, LF mode <u>38/</u><u>39/</u>

DLA LAND AND MARITIME	SIZE A	CAC	GE CODE 16236	DWG NO. V62/14644
COLUMBUS, OHIO		REV	С	PAGE 7

Test	Symbol	Test conditions	Vcc		Limits		Unit
		<u>11</u> /		Min	Тур	Max	
Crystal Oscillator, XT1, Low-Fre	quency (LF) Mode <u>31</u> /	•		•		•
		$f_{OSC} = 4$ MHz, XTS = 1, XOSCOFF = 0, XT1BYPASS = 0, XT1DRIVE = {0}, T _A = 25°C, C _{L,eff} = 16 pF	3 V		175		μA
XT1 oscillator crystal current HF mode	IVCC,HF	$f_{OSC} = 8 \text{ MHz},$ XTS = 1, XOSCOFF = 0, XT1BYPASS = 0, XT1DRIVE = {1}, T _A = 25°C, C _{L,eff} = 16 pF			300		
		$f_{OSC} = 16 \text{ MHz},$ XTS = 1, XOSCOFF = 0, XT1BYPASS = 0, XT1DRIVE = {2}, T _A = 25°C, C _{L,eff} = 16 pF			350		
		$f_{OSC} = 24 \text{ MHz},$ XTS = 1, XOSCOFF = 0, XT1BYPASS = 0, XT1DRIVE = {3}, T _A = 25°C, C _{L,eff} = 16 pF			550		
XT1 oscillator crystal frequency, HF mode 0	f _{XT1,HF0}	XTS = 1, XT1BYPASS = 0, XT1DRIVE = {0} <u>33</u> /		4		6	MHz
XT1 oscillator crystal frequency, HF mode 1	f _{XT1,HF1}	XTS = 1, XT1BYPASS = 0, XT1DRIVE = {1} <u>33</u> /		6		10	
XT1 oscillator crystal frequency, HF mode 2	fxt1,HF2	XTS = 1, XT1BYPASS = 0, XT1DRIVE = {2} <u>33</u> /		10		16	
XT1 oscillator crystal frequency, HF mode 3	fxt1,HF3	XTS = 1, XT1BYPASS = 0, XT1DRIVE = {3} <u>33</u> /		16		24	
XT1 oscillator logic-level square- wave input frequency, HF mode	fxt1,hf,sw	XTS = 1, XT1BYPASS = 1 <u>32</u> / <u>33</u> /		1		24	
		XTS = 1, XT1BYPASS = 0, XT1DRIVE = $\{0\}$, $f_{XT1,HF}$ = 4 MHz, C _{L,eff} = 16 pF			450		Ω
Oscillation allowance for HF	OAhf	XTS = 1, XT1BYPASS = 0, XT1DRIVE = {1}, f _{XT1,HF} = 8 MHz, C _{L,eff} = 16 pF			320		
crystals <u>40</u> /		XTS = 1, XT1BYPASS = 0, XT1DRIVE = {2}, f _{XT1,HF} = 16 MHz, C _{L,eff} = 16 pF			200		
		XTS = 1, XT1BYPASS = 0, XT1DRIVE = {3}, fxT1,HF = 24 MHz, CL,eff = 16 pF			200		
Startup time, HF mode 37/	tstart,hf	$f_{OSC} = 4$ MHz, XTS = 1, XT1BYPASS = 0, XT1DRIVE = {0}, T _A = 25°C, C _{L,eff} = 16 pF	3 V		8		ms
		f_{OSC} = 4 MHz, XTS = 1, XT1BYPASS = 0, XT1DRIVE = {0}, T _A = 25°C, C _{L.eff} = 16 pF			2		

TABLE I.	Electrical	performance	characteristics	- Continued.	1/

DLA LAND AND MARITIME	SIZE A	CA	GE CODE 16236	DWG NO. V62/14644
COLUMBUS, OHIO		REV	С	PAGE 8

Test	Symbol	Test conditions V _{CC}			Limits		Unit
		<u>11</u> /		Min	Тур	Max	
Crystal Oscillator, XT1, Low-Frequen	cy (LF) Mod	le - Continued <u>31</u> /					
Integrated effective load capacitance <u>41/ 42</u> /	$C_{L,eff}$	XTS = 1			1		pF
Duty cycle, HF mode		XTS = 1, Measured at ACLK, $f_{XT1 HE2} = 24 \text{ MHz}$		40	50	60	%
Oscillator fault frequency, HF mode <u>35</u> /	f _{Fault,HF}	$XTS = 1 \frac{36}{4}$		145		900	kHz
Internal Very-Low-Power Low-Freque	ency Oscilla	tor (VLO)					
VLO frequency	fvlo	Measured at ACLK	2 V to 3.6 V	4.3	8.3	13.3	kHz
VLO frequency temperature drift	df _{VLO} /d _T	Measured at ACLK <u>43</u> /			0.5		%/°C
VLO frequency supply voltage drift	dfvL0/dvcc	Measured at ACLK <u>44</u> /			4		%/V
Duty cycle	fvlo,dc	Measured at ACLK		35	50	65	%
DCO frequencies							
DCO frequency low, trimmed	f _{DCO,LO}	Measured at ACLK, DCORSEL = 0	2 V to 3.6 V, -40°C to 85°C		5.37	±5%	MHz
		Measured at ACLK, DCORSEL = 1	2 V to 3.6 V, -40°C to 85°C		16.2	±5%	
DCO frequency mid, trimmed	fdco,мd	Measured at ACLK, DCORSEL = 0	2 V to 3.6 V, -40°C to 85°C		6.67	±5%	-
		Measured at ACLK, DCORSEL = 1	2 V to 3.6 V, -40°C to 85°C		20	±5%	-
DCO frequency high, trimmed	fdco,ні	Measured at ACLK, DCORSEL = 0	2 V to 3.6 V, -40°C to 85°C		8	±5%	
		Measured at ACLK, DCORSEL = 1	2 V to 3.6 V, -40°C to 85°C		23.8	±5%	
Duty cycle	fdco,dc	Measured at ACLK, divide by 1, No external divide, All DCO setting	2 V to 3.6 V, -40°C to 85°C	35	50	65	%

 TABLE I.
 Electrical performance characteristics
 - Continued.
 1/

DLA LAND AND MARITIME	SIZE A	CA	GE CODE 16236	DWG NO. V62/14644
COLUMBUS, OHIO		REV	С	PAGE 9

TABLE I. Electrical performance characteristics - Continued.	1/
--	----

Test	Symbol	Test conditions	Vcc		Limits		Unit
		<u>11</u> /		Min	Тур	Max	
MODOSC	·	•	•			<u></u>	
Current consumption	IMODOSC	Enabled	2 V to 3.6 V		44		μA
MODOSC frequency	f _{MODOSC}		2 V to 3.6 V	4.2	5.0	5.7	MHz
Duty cycle	fmodosc,dc	Measured at ACLK, divide by 1	2 V to 3.6 V	35	50	65	%
PMM, Core Voltage							
Core voltage, active mode	V _{CORE} (AM)	$2 \text{ V} \le \text{DV}_{\text{CC}} \le 3.6 \text{ V}$			1.5		V
Core voltage, low-current mode	VCORE(LPM)	$2 \text{ V} \leq \text{DV}_{\text{CC}} \leq 3.6 \text{ V}$			1.5		
PMM, SVS, BOR							
SVS _H current consumption, active mode	Isvsh,am	VCC = 3.6 V			5		μA
SVS _H current consumption, low power modes	I _{SVSH,LPM}	VCC = 3.6 V			0.8		
SVS_H on voltage level, falling supply voltage	Vsvsh-			1.81	1.88	1.95	V
SVS_{H} off voltage level, rising supply voltage	VsvsH+			1.85	1.93	2	
SVS_H propagation delay, active mode	t _{PD,SVSH,} AM	dVCC/dt = 10 mV/µs			10		μs
SVS_{H} propagation delay, low power modes	t _{PD,SVSH,} LPM	dVCC/dt = 1 mV/µs			30		
SVS _L current consumption	I _{SVSL}				0.3		μA
SVS∟ on voltage level	Vsvsl-				1.42		V
SVS∟ off voltage level	V _{SVSL+}				1.47		
Wake-Up from Low Power Modes							
Wake-up time from LPM0 to active mode <u>45</u> /	t _{WAKE-UP} LPM0		2 V, 3 V, -40°C to 85°C		0.58	1.1	μs
Wake-up time from LPM1, LPM2 to active mode <u>45</u> /	twake-up LPM12				12	25	
Wake-up time from LPM3 or LPM4 to active mode <u>45</u> /	twake-up LPM34				78	165	
Wake-up time from LPM3.5 or LPM4.5 to	twake-up		2 V, 3 V, 0°C to 85°C		310	575	
active mod	LPMx.5		2 V, 3 V, -40°C to 85°C		310	1100	
Wake-up time from $\overline{\text{RST}}$ to active mode $\underline{46}$ /	t _{WAKE-UP} RESET	V _{CC} stable	2 V, 3 V, -40°C to 85°C		230		
Wake-up time from BOR or power-up to active mode	twake-up bor	dV _{cc} /dt = 2400 V/s	1		1.6		ms
Pulse duration required at $\overline{\text{RST}}$ /NMI terminal to accept a reset event $\frac{47}{7}$	treset]	4			ns

DLA LAND AND MARITIME	SIZE A	CA	GE CODE 16236	DWG NO. V62/14644
COLUMBUS, OHIO		REV	С	PAGE 10

	1	1					
Test	Symbol	Test conditions	Vcc		Limits		Unit
		<u>11</u> /		Min	Тур	Max	
Timer_A							
Timer_A input clock frequency	fтA	Internal: SMCLK, ACLK, External: TACLK Duty cycle = 50% ± 10%	2 V, 3 V			24	MHz
Timer_A capture timing	t⊤A,cap	All capture inputs, Minimum pulse duration required for capture		20			ns
Timer_B	•	•					
Timer_B input clock frequency	fтA	Internal: SMCLK, ACLK, External: TBCLK	2 V, 3 V			24	MHz
		Duty cycle = $50\% \pm 10\%$					
Timer_B capture timing	t _{TA,cap}	All capture inputs, Minimum pulse duration required for capture		20			ns
eUSCI (UART Mode) Rec	ommended	d Operating Conditions					
eUSCI input clock frequency	feusci	Internal: SMCLK, ACLK, External: UCLK Duty cycle = 50% ± 10%				f system	MHz
BITCLK clock frequency (equals baud rate in MBaud)	fвітськ					5	
eUSCI (UART Mode)							
		UCGLITx = 0	2 V, 3 V	5	15	20	ns
UART receive deglitch	tt	UCGLITx = 1		20	45	60	
time <u>48</u> /		UCGLITx = 2		35	80	120	
		UCGLITx = 3		50	110	180	
eUSCI (SPI Master Mode)	Recomme	ended Operating Conditions					
eUSCI input clock frequency	f _{eUSCI}	Internal: SMCLK, ACLK Duty cycle = 50% ± 10%				f system	MHz

TABLE I. Electrical performance characteristics - Continued. $\underline{1}/$

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CA	GE CODE 16236	DWG NO. V62/14644
		REV	С	PAGE 11

Test	Symbo	I Test conditions		Vcc		Limits		Unit
		<u>11</u> /		-	Min	Тур	Max	
eUSCI (SPI Master Mode) 49	9/			-			·	
STE lead time, STE active to	tste,lead	UCSTEM = 0, UCMODEx = 01 c	or 10	2 V, 3 V	1			UCxCLK
clock		UCSTEM = 1, UCMODEx = 01 c	or 10		1			cycles
STE lag time, Last clock to	t _{ste,lag}	UCSTEM = 0, UCMODEx = 01 c	or 10		1			
STE inactive		UCSTEM = 1, UCMODEx = 01 c	or 10		1			
STE access time, STE active	tste,acc	UCSTEM = 0, UCMODEx = 01 c	or 10				55	ns
to SIMO data out		UCSTEM = 1, UCMODEx = 01 c	or 10				35	
STE disable time, STE inactive	t _{ste,Dis}	UCSTEM = 0, UCMODEx = 01 c	or 10				40	
to SIMO high impedance		UCSTEM = 1, UCMODEx = 01 c	or 10				30	
SOMI input data setup time	t su,мi			2 V	35			
				3 V	35			
SOMI input data hold time	t _{нD,MI}			2 V	0			
				3 V	0			
SIMO output data valid time	t _{valid,mo}	UCLK edge to SIMO valid,		2 V			30	
<u>50</u> /		C∟ = 20 pF		3 V			30	
SIMO output data hold time	t нd,мo	C _L = 20 pF		2 V	0			
<u>51</u> /				3 V	0			
eUSCI (SPI Slave Mode) 52/								
STE lead time, STE active to	t _{STE,LEAD}			2 V	7			ns
clock				3 V	7			
STE lag time, Last clock to STE	tste,lag			2 V	0			
inactive				3 V	0			
STE access time, STE active to	t _{STE,ACC}			2 V			65	
SOMI data out				3 V			40	
STE disable time, STE inactive	tste,dis			2 V			40	
to SOMI high impedance				3 V			35	
SIMO input data setup time	tsu,si			2 V	2			
				3 V	2			
SIMO input data hold time	t _{HD,SI}			2 V	5			
				3 V	5			
SOMI output data valid time (t _{VALID,SO}	UCLK edge to SOMI valid,		2 V			30	
		CL = 20 pF		3 V			30	1
SOMI output data hold time	t _{HD,SO}	CL = 20 pF		2 V	4			1
				3 V	4			1

TABLE I.	Electrical	performance characteristics	- Continued.	1/

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CA	GE CODE 16236	DWG NO. V62/14644
		REV	С	PAGE 12

Test	Symbol	Test conditions	Vcc		Limits		Unit
		<u>11</u> /		Min	Тур	Max	
eUSCI (I2C Mode) see FIGUF	RE 13.		·		•	·	•
eUSCI input clock frequency	feusci	Internal: SMCLK, ACLK, External: UCLK Duty cycle = 50% ± 10%				fsystem	MHz
SCL clock frequency	fscl		2 V, 3 V	0		400	kHz
Hold time (repeated) START	thd,sta	f _{SCL} = 100 kHz		4.0			μs
		f _{SCL} > 100 kHz		0.6			
Setup time for a repeated START	t _{su,sta}	f _{SCL} = 100 kHz		4.7			
		f _{SCL} > 100 kHz		0.6			
Data hold time	t _{HD,DAT}			0			ns
Data setup time	tsu,dat			250			
Setup time for STOP	tsu,sto	f _{SCL} = 100 kHz		4.0			μs
		f _{SCL} > 100 kHz		0.6			
Pulse duration of spikes	t _{SP}	UCGLITx = 0		50		600	ns
suppressed by input filter		UCGLITx = 1		25		300	
		UCGLITx = 2		12.5		150	
		UCGLITx = 3		6.25		75	
Clock low timeout	t _{TIMEOUT}	UCCLTOx = 1			27		ms
		UCCLTOx = 2			30		
		UCCLTOx = 3			33		
10-Bit ADC, Power Supply and I	nput Rang	e Conditions					
Analog supply voltage	AVcc	AV _{CC} and DV _{CC} are connected together, AV _{SS} and DV _{SS} are connected together, $V_{(AVSS)} = V_{(DVSS)} = 0 V$		2.0		3.6	V
Analog input voltage range	V _(Ax)	All ADC10 pins		0		AV _{CC}	
Operating supply current into AVCC terminal, reference current	IADC10_A	f _{ADC10CLK} = 5 MHz, ADC10ON = 1, REFON = 0, SHT0 = 0, SHT1 = 0,	2 V		90	150	μA
not included		ADC10DIV = 0	3 V		100	170	
Input capacitance	Сı	Only one terminal Ax can be selected at one time from the pad to the ADC10_A capacitor array including wiring and pad			6		pF
Input MUX ON resistance	Rı	$AV_{CC} \ge 2 V, 0 V \le V_{Ax} \le AV_{CC}$				36	kΩ

TABLE I. Electrical performance characteristics - Continued. $\underline{1}/$

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CA	GE CODE 16236	DWG NO. V62/14644
		REV	С	PAGE 13

Tost	Symbol	Tast conditions	Vaa		Limits		
1651	Symbol		VCC	N.A.iva		Max	Unit
		<u>11</u> /		IVIIN	Тур	wax	
10-Bit ADC, Timing Para	meters						
	fadc10clk	For specified performance of ADC10 linearity parameters	2 V to 3.6 V	0.45	5	5.5	MHz
Internal ADC10 oscillator (MODOSC)	fADC100SC	ADC10DIV = 0, fADC10CLK = fADC100SC	2 V to 3.6 V	4.2	4.5	5.7	
Conversion time	tCONVERT	REFON = 0, Internal oscillator, 12 ADC10CLK cycles, 10-bit mode, f _{ADC10OSC} = 4.5 MHz to 5.5 MHz	2 V to 3.6 V	2.18		2.67	μs
		External f _{ADC10CLK} from ACLK, MCLK, or SMCLK, ADC10SSEL ≠ 0	2 V to 3.6 V		<u>55</u> /		
Turn on settling time of the ADC	t _{ADC10ON}	The error in a conversion started after t _{ADC100N} is less than ±0.5 LSB,				100	ns
Sampling time	t _{Sample}	$R_s = 1000 \Omega$, $R_i = 36000 \Omega$, $C_i = 3.5 pF$,	2 V	1.5			μs
		Approximately eight Tau (T) are required to get an error of less than ± 0.5 LSB	3 V	2.0			
10-Bit ADC, Linearity Pa	rameters	•	•				
Integral linearity error	Eı	$1.4 \text{ V} \leq (\text{V}_{eREF} + - \text{V}_{REF} / \text{V}_{eREF}) \text{min} \leq 1.6 \text{ V}$	2 V to 3.6 V	-1.4		1.4	LSB
		$1.6 \text{ V} < (V_{eREF+} - V_{REF-}/V_{eREF-}) \text{min} \le V_{AVCC}$		-1.3		1.3	
Differential linearity error	ED	$(V_{eREF+} - V_{REF-}/V_{eREF-})min \le (V_{eREF+} - V_{REF-}/V_{eREF-})$	2 V to 3.6 V	-1.2		1.2	
Offset error	Eo	$(V_{eREF+} - V_{REF-}/V_{eREF-})min \le (V_{eREF+} - V_{REF-}/V_{eREF-})$	2 V to 3.6 V		±2.5		mV
Gain error, external reference	E _G	$(V_{eREF+} - V_{REF-}/V_{eREF-})min \le (V_{eREF+} - V_{REF-}/V_{eREF-})$	2 V to 3.6 V	-1.4		1.4	LSB
Gain error, internal reference					±4		%
Total unadjusted error, external reference	Ет	$(V_{eREF+} - V_{REF-}/V_{eREF-})min \le (V_{eREF+} - V_{REF-}/V_{eREF-})$	2 V to 3.6 V		±2.3		LSB
Total unadjusted error, internal reference <u>56</u> /					±4		%

 TABLE I.
 Electrical performance characteristics
 - Continued.
 1/

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CAGI 10	E CODE 6236	DWG NO. V62/14644
		REV	С	PAGE 14

Test	Symbol	Test conditions	Vcc		Limits		Unit
		<u>11</u> /		Min	Тур	Max	
REF, External Reference 57/							
Positive external reference voltage input	V _{eREF+}	$V_{eREF+} > V_{eREF-} $ <u>58</u> /		1.4		AVcc	V
Negative external reference voltage input	VeREF-	$V_{eREF+} > V_{eREF-} $ <u>59</u> /		0		1.2	
Differential external reference voltage input	(V _{eREF+} – V _{REF–} /V _{eREF–})	$V_{eREF+} > V_{eREF-} $ <u>60</u> /		1.4		AVcc	
Static input current	Iveref+, Iveref-	$\begin{array}{l} 1.4 \ V \leq V_{eREF^+} \leq V_{AVCC}, \\ V_{eREF^-} = 0 \ V, \\ f_{ADC10CLK} = 5 \ MHz, \\ ADC10SHTx = 1h, \\ \hline Conversion \ rate \ 200 \ ksps \\ \hline 1.4 \ V \leq V_{eREF^+} \leq V_{AVCC}, \\ V_{eREF^-} = 0 \ V, \\ f_{ADC10CLK} = 5 \ MHz, \\ ADC10SHTx = 1h, \end{array}$	2 V, 3 V		±6 ±1		Αμ
		Conversion rate 200 ksps					
Capacitance at VREF+ or VREF- terminal <u>61</u> /	Cvref+, Cvref-				10		μF
REF, Built-In Reference							
Positive built-in reference	VREF+	REFVSEL = {2} for 2.5 V, REFON = 1	3 V	2.39	2.5	2.61	V
voltage output		REFVSEL = {1} for 2 V, REFON = 1] [1.91	2.0	2.09	
		REFVSEL = {0} for 1.5 V, REFON = 1	1 [1.43	1.5	1.57	
AVCC minimum voltage,	AV _{CC(min)}	REFVSEL = {0} for 1.5 V		2.0			
Positive built-in reference active		REFVSEL = {1} for 2 V		2.2			
		REFVSEL = {2} for 2.5 V		2.7			
Operating supply current into AVCC terminal <u>62</u> /	IREF+	fADC10CLK = 5 MHz REFON = 1, REFBURST = 0	3 V		33		μA
Temperature coefficient of built- in reference	T _{REF+}	REFVSEL = (0, 1, 2}, REFON = 1			±35		ppm/ °C
		$AV_{CC} = AV_{CC (min)} - AV_{CC(max)},$ $T_A = 25^{\circ}C, REFON = 1,$ REFVSEL = (0) for 1.5 V			1600		μV/V
Power supply rejection ratio (DC)	PSRR_DC	$T_{A} = 25^{\circ}C, \text{ REFON} = 1,$ REFVSEL = (1) for 2 V			1900		
		$AV_{CC} = AV_{CC (min)} - AV_{CC(max)},$ $T_A = 25^{\circ}C, REFON = 1,$ REFVSEL = (2) for 2.5 V			3600		
Settling time of reference voltage <u>63</u> /	tsettle	AV _{CC} = AV _{CC (min)} - AV _{CC(max)} , REFVSEL = $(0, 1, 2)$, REFON = $0 \rightarrow 1$			30		μs

TABLE I. Electrical performance characteristics - Continued. 1/

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CA	GE CODE 16236	DWG NO. V62/14644
		REV	С	PAGE 15

Test	Symbol	Test conditions	Vcc		Limits		Unit
		<u>11</u> /		Min	Тур	Max	
REF, Temperature Sensor an	nd Built-In V _M	IID		•			
<u>64</u> /	VSENSOR	ADC10ON = 1, INCH = 0Ah, $T_A = 0^{\circ}C$	2 V, 3 V		790		
	TCSENSOR	ADC10ON = 1, INCH = 0Ah	2 V, 3 V		2.55		mV/°C
Sample time required if	tSENSORsampl	ADC10ON = 1, INCH = 0Ah,	2 V	30			μs
channel 10 is selected <u>65</u> /	e)	Error of conversion result \leq 1 LSB	3V	30			
AVCC divider at channel 11	V _{MID}	ADC10ON = 1, INCH = 0Bh,	2 V	0.96	1.0	1.04	V
		VMID is ~0.5 × V _{AVCC}	3V	1.43	1.5	1.57	
Sample time required if channel 11 is selected <u>66</u> /	t∨MID(sample)	ADC10ON = 1, INCH = 0Bh, Error of conversion result \leq 1 LSB	2 V, 3 V	1000			ns
Comparator_D							
		Overdrive = 10 mV, VIN- = (VIN+ - 400 mV) to (VIN+ + 10 mV)		49	100	202	ns
Propagation delay, AVCC = 2 V to 3.6 V	t _{pd}	Overdrive = 100 mV, VIN- = (VIN+ – 400 mV) to (VIN+ + 100 mV)			80		
		Overdrive = 250 mV, VIN- = (VIN+ – 400 mV) to (VIN+ + 250 mV)			50		
Filter timer added to the	t _{filter}	CDF = 1, CDFDLY = 00		0.28	0.5	1.1	μs
propagation delay of the		CDF = 1, CDFDLY = 01		0.49	0.9	1.8	
comparator		CDF = 1, CDFDLY = 10		0.85	1.6	3.31	
lument offeret		CDF = 1, CDFDLY = 11		1.59	3.0	6.5	
	Voffset	AVCC = 2 V to 3.6 V		-26		20	mv
Common mode input range	VIC	AVCC - 2 V 10 3.0 V		0		1	v
Comparator only	Icomp(AVCC)	CDON = 1, AVCC = 2 V to 3.6 V			28		μA
Reference buffer and R- ladder	I _{ref(AVCC)}	CDREFLx = 01, AVCC = 2 V to 3.6 V			20		μA
Comparator enable time	t _{enable,comp}	CDON = 0 to CDON = 1, AVCC = 2 V to 3.6 V			1.1	2.3	μs
Resistor ladder enable time	tenable,rladder	CDON = 0 to $CDON = 1$, AVCC = 2 V to 3.6 V			1.1	2.3	
Reference voltage for a tap	V _{CB_REF}	VIN = voltage input to the R-ladder, n = 0 to 31		VIN x (n +0.49) / 32	VIN x (n + 1) / 32	VIN x (n + 1.51) / 32	V

 TABLE I.
 Electrical performance characteristics
 - Continued.
 1/

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CAGE CODE 16236		DWG NO. V62/14644	
		REV	С	PAGE 16	

The contraction of the contracti
--

Test	Symbol	Test conditions	Vcc		Limits		Unit
		<u>11</u> /		Min	Тур	Max	
FRAM							
Write supply voltage	DV _{CC} (WRITE)			2.0		3.6	V
Word or byte write time	twrite					120	ns
Read access time <u>67</u> /	tACCESS					60	
Precharge time <u>67</u> /	t PRECHARGE					60	
Cycle time, read or write operation	tcycle			120			
Read and write endurance				10 ¹⁵			cycles
		T _J = 25°C		100			years
Data retention duration	t _{Retention}	T」= 70°C		40			
		T」 = 85°C		10			
JTAG and Spy-Bi-Wire Interface							
Spy-Bi-Wire input frequency	fsbw		2 V, 3 V	0		20	MHz
Spy-Bi-Wire low clock pulse duration	t _{SBW,Low}		2 V, 3 V	0.025		15	μs
Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge)	tsbw, En		2 V, 3 V			1	
Spy-Bi-Wire return to normal operation time	t _{SBW,Rst}			18		37	
TCK input frequency, 4-wire JTAG	f _{тск}		2 V	0		5	MHz
			3V	0		10	MHz
Internal pulldown resistance on TEST	Rinternal		2 V, 3 V	19	35	51.5	kΩ

DLA LAND AND MARITIME	SIZE	CAGE CODE		DWG NO.	
	A	16236		V62/14644	
COLUMBUS, OHIO		REV	С	PAGE 17	

- 1/ Testing and other quality control techniques are used to the extent deemed necessary to assure product performance over the specified temperature range. Product may not necessarily be tested across the full temperature range and all parameters may not necessarily be tested. In the absence of specific parametric testing, product performance is assured by characterization and/or design.
- 2/ Over recommended operating free-air temperature (unless otherwise noted).
- 3/ All inputs are tied to 0 V or to Vcc. Outputs do not source or sink any current.
- 4/ The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance are chosen to closely match the required 9 pF.
- 5/ Characterized with program executing typical data processing.
- 6/ At MCLK frequencies above 8 MHz, the FRAM requires wait states. When wait states are required, the effective MCLK frequency, f_{MCLK,eff}, decreases. The effective MCLK frequency is also dependent on the cache hit ratio. SMCLK is not affected by the number of wait states or the cache hit ratio. The following equation can be used to compute f_{MCLK,eff}:
- f_{MCLK,eff,MHz} = f_{MCLK,MHz} x 1 / [# of wait states x ((1 cache hit ratio percent/100)) + 1].
 Program and data reside entirely in FRAM. No wait states enabled. DCORSEL = 0, DCOFSELx = 3 (f_{DCO} = 8 MHz). MCLK = SMCLK.
- 8/ Program resides in FRAM. Data resides in SRAM. Average current dissipation varies with cache hit-to-miss ratio as specified. Cache hit ratio represents number cache accesses divided by the total number of FRAM accesses. For example, a 25% ratio implies one of every four accesses is from cache, the remaining are FRAM accesses.
 - For 1, 4, and 8 MHz, DCORSEL = 0, DCOFSELx = 3 (f_{DCO} = 8 MHz). MCLK = SMCLK. No wait states enabled.
 - For 16 MHz, DCORSEL = 1, DCOFSELx = 0 (f_{DCO} = 16 MHz).MCLK = SMCLK. One wait state enabled.
 - For 20 MHz, DCORSEL = 1, DCOFSELx = 2 (f_{DCO} = 20 MHz).MCLK = SMCLK. Three wait states enabled.
 - For 24 MHz, DCORSEL = 1, DCOFSELx = 3 (f_{DCO} = 24 MHz).MCLK = SMCLK. Three wait states enabled.
- 9/ See FIGURE 4 for typical curves. Each characteristic equation shown in the graph is computed using the least squares method for best linear fit using the typical data shown in manufacturer data.
 - f_{ACLK} = 32786 Hz, f_{MCLK} = f_{SMCLK} at specified frequency. No peripherals active.
 - XTS = CPUOFF = SCG0 = SCG1 = OSCOFF= SMCLKOFF = 0.
- 10/ All execution is from RAM.
 - For 1, 4, and 8 MHz, DCORSEL = 0, DCOFSELx = 3 (fDCO = 8 MHz). MCLK = SMCLK.
 - For 16 MHz, DCORSEL = 1, DCOFSELx = 0 (f_{DCO} = 16 MHz). MCLK = SMCLK.
 - For 20 MHz, DCORSEL = 1, DCOFSELx = 2 (f_{DCO} = 20 MHz). MCLK = SMCLK.
 - For 24 MHz, DCORSEL = 1, DCOFSELx = 3 (f_{DCO} = 24 MHz). MCLK = SMCLK
- 11/ Over recommended ranges of supply voltage and operating at $-40^{\circ}C \le T_{J} \le 80^{\circ}C$ (unless otherwise noted).
- 12/ Current for watchdog timer clocked by SMCLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0), f_{ACLK} = 32768 Hz, f_{MCLK} = 0 MHz, f_{SMCLK} = 1 MHz. DCORSEL = 0, DCOFSELx = 3 (f_{DC0} = 8 MHz).
- 13/ Current for brownout, high-side supervisor (SVSH) and low-side supervisor (SVSL) included.
- 14/ Current for watchdog timer clocked by SMCLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0), f_{ACLK} = 32768 Hz, f_{MCLK} = 0 MHz, f_{SMCLK} = 8 MHz. DCORSEL = 0, DCOFSELx = 3 (f_{DC0} = 8 MHz).
- 15/ Current for watchdog timer clocked by SMCLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0), f_{ACLK} = 32768 Hz, f_{MCLK} = 0 MHz, f_{SMCLK} = 24 MHz. DCORSEL = 1, DCOFSELx = 3 (f_{DC0} = 24 MHz).
- <u>16</u>/ Current for watchdog timer (clocked by ACLK) and RTC (clocked by XT1 LF mode) included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0 (LPM2), f_{ACLK} = 32768 Hz, f_{MCLK} = 0 MHz, f_{SMCLK} = f_{DC0} = 0 MHz, DCORSEL = 0, DCOFSELx = 3, DCO bias generator enabled.
- 17/ Current for brownout, high-side supervisor (SVSH) included. Low-side supervisor disabled (SVSL).
- 18/ Current for watchdog timer (clocked by ACLK) and RTC (clocked by XT1 LF mode) included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).
- CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = 32768 Hz, fMCLK = fSMCLK = fDC0 = 0 MHz.
- <u>19</u>/ Current for watchdog timer (clocked by ACLK) included. ACLK = VLO.
- CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), f_{ACLK} = f_{VL0}, f_{MCLK} = f_{SMCLK} = f_{DC0} = 0 MHz

DLA LAND AND MARITIME	SIZE	CAGE CODE		DWG NO.	
	A	16236		V62/14644	
COLUMBUS, OHIO		REV	С	PAGE 18	

- 20/ CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 (LPM4), fDCO = fACLK = fMCLK = 0 MHz.
- 21/ Internal regulator disabled. No data retention. RTC active clocked by XT1 LF mode.
- CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1, PMMREGOFF = 1 (LPM3.5), fDC0 = fACLK = fMCLK = 0 MHZ <u>22</u>/ Internal regulator disabled. No data retention.
- CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1, PMMREGOFF = 1 (LPM4.5), fDC0 = fACLK = fMCLK = 0 MHZ
- <u>23</u>/ Some devices may contain additional ports with interrupts. See the block diagram and terminal function descriptions.
- 24/ An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It may be set by trigger signals shorter than t(int).
- The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted.
- <u>25</u>/ <u>26</u>/ The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup/pulldown resistor is disabled.
- 27/ The maximum total current, I_(OHmax) and I_(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop specified.
- <u>28</u>/ The maximum total current, I_(OLmax) and I_(OLmax), for all outputs combined, should not exceed ±100 mA to hold the maximum voltage drop specified.
- <u>29</u>/ A resistive divider with 2 × 1.6 kΩ between V_{CC} and V_{SS} is used as load. The output is connected to the center tap of the divider. C_L = 20 pF is connected from the output to Vss.
- The output voltage reaches at least 10% and 90% V_{CC} at the specified toggle frequency. <u>30</u>/ 31/
 - To improve EMI on the XT1 oscillator, the following guidelines should be observed.
 - Keep the trace between the device and the crystal as short as possible.
 - Design a good ground plane around the oscillator pins.
 - Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
 - Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
 - Use assembly materials and processes that avoid any parasitic load on the oscillator XIN and XOUT pins.
 - If conformal coating is used, ensure that it does not induce capacitive or resistive leakage between the oscillator pins.
- 32/ When XT1BYPASS is set, XT1 circuits are automatically powered down. Input signal is a digital square wave with parametrics defined in the Schmitt-trigger Inputs section of the manufacturer data sheet.
- Maximum frequency of operation of the entire device cannot be exceeded. <u>33</u>/
- Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the 34/ XT1DRIVE settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following guidelines, but should be evaluated based on the actual crystal selected for the application:
 - For XT1DRIVE = $\{0\}$, $C_{L,eff} \le 6 \text{ pF}$.
 - For XT1DRIVE = {1}, 6 pF $\leq C_{L,eff} \leq 9$ pF. •
 - For XT1DRIVE = {2}, 6 pF \leq C_{L,eff} \leq 10 pF.
 - For XT1DRIVE = {3}, 6 pF \leq C_{L,eff} \leq 12 pF
- <u>35</u>/ Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag. Frequencies in between might set the flag.
- Measured with logic-level input frequency but also applies to operation with crystals. <u>36</u>/
- 37/ Includes startup counter of 4096 clock cycles.
- Requires external capacitors at both terminals. <u>38</u>/
- <u>39</u>/ Values are specified by crystal manufacturers. Include parasitic bond and package capacitance (approximately 2 pF per pin). Recommended values supported are 6 pF, 9 pF, and 12 pF. Maximum shunt capacitance of 1.6 pF.
- <u>40</u>/ Oscillation allowance is based on a safety factor of 5 for recommended crystals.
- 41/ Includes parasitic bond and package capacitance (approximately 2 pF per pin). Because the PCB adds additional capacitance, it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the used crystal.
- Requires external capacitors at both terminals. Values are specified by crystal manufacturers. Recommended values supported <u>42</u>/ are 14 pF, 16 pF, and 18 pF. Maximum shunt capacitance of 7 pF.
- Calculated using the box method: (MAX(-40 to 85°C) MIN(-40 to 85°C)) / MIN(-40 to 85°C) / (85°C (-40°C)) <u>43</u>/
- <u>44</u>/ Calculated using the box method: (MAX(2.0 to 3.6 V) - MIN(2.0 to 3.6 V)) / MIN(2.0 to 3.6 V) / (3.6 V - 2 V)
- 45/ The wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt or wake-up event) until the first instruction of the user program is executed.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CAGE CODE 16236		DWG NO. V62/14644	
		REV	С	PAGE 19	

- 46/ The wake-up time is measured from the rising edge of the RST signal until the first instruction of the user program is executed.
- 47/ Meeting or exceeding this time makes sures a reset event occurs. Pulses shorter than this minimum time may or may not cause a reset event to occur.
- <u>48</u>/ Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are correctly recognized, their duration should exceed the maximum specification of the deglitch time.
- 49/ fucxclk = 1/2tLo/HI with tLo/HI = max(tvALID,MO(eUSCI) + tsu,SI(Slave), ISU,MI(eUSCI) + tvALID,SO(Slave)). For the slave's parameters tsu,SI(Slave) and tvALID,SO(Slave) see the SPI parameters of the attached slave.
- 50/ Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagramsin FIGURE 9 and FIGURE 10.
- 51/ Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in FIGURE 9 and FIGURE 10.
- 52/ fucxcLK = 1/2tLO/HI with tLO/HI ≥ max(tvALID,MO(Master) + tsu,SI(eUSCI), tsu,MI(Master) + tvALID,SO(eUSCI)). For the master's parameters tsu,MI(Master) and tvALID,MO(Master) see the SPI parameters of the attached slave.
- 53/ Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams in FIGURE 11 and FIGURE 12.
- 54/ Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in FIGURE 11 and FIGURE 12.
- 55/ 12 × ADC10DIV × 1/f_{ADC10CLK}
- 56/ Error is dominated by the internal reference.
- 57/ The external reference is used during ADC conversion to charge and discharge the capacitance array. The input capacitance, Ci, is also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the recommendations on analog-source impedance to allow the charge to settle for 10-bit accuracy.
- 58/ The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced accuracy requirements.
- 59/ The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced accuracy requirements.
- 60/ The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with reduced accuracy requirements.
- 61/ Two decoupling capacitors, 10 μF and 100 nF, should be connected to VREF to decouple the dynamic current required for an external reference source if it is used for the ADC10_B.
- 62/ The internal reference current is supplied by terminal AVCC. Consumption is independent of the ADC10ON control bit, unless a conversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion.
- $\underline{63}$ / The condition is that the error in a conversion started after t_{REFON} is less than ±0.5 LSB.
- <u>64</u>/ The temperature sensor offset can vary significantly. A single-point calibration is recommended to minimize the offset error of the built-in temperature sensor.
- <u>65</u>/ The typical equivalent impedance of the sensor is 51 k Ω . The sample time required includes the sensor-on time t_{SENSOR(on)}.
- 66/ The on-time t_{VMID(on)} is included in the sampling time t_{VMID(sample)}; no additional on time is needed.
- 67/ When using manual wait state control, see manufacturer data for recommended settings for common system frequencies.
- 68/ Tools accessing the Spy-Bi-Wire interface must wait for the t_{SBW,En} time after pulling the TEST/SBWTCK pin high before applying the first SBWTCK clock edge.
- 69/ ftck may be restricted to meet the timing requirements of the module selected.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CAGE CODE 16236		DWG NO. V62/14644	
		REV	С	PAGE 20	

Dimensions							
Symbol	Millimeters		Symbol	Milli	meters		
	Min	Max		Min	Max		
А	0.08	1.00	D/E	5.85	6.15		
A1	0.00 0.05		е	0.50	BSC		
A2	0.20	NOM	S	0.30	0.50		
b	0.18	0.30					

NOTES:

- 1. All linear dimensions are in millimeters.
- 2.
- 3.
- This drawing is subject to change without notice. The package thermal pad must be soldered to the board for thermal and mechanical performance. See the additional figure in the manufacturer data sheet for details regarding the exposed thermal pad features and 4. dimensions.
- 5. Package complies to JEDEC MO-220 variation VJJD-2..

FIGURE 1. Case outline.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CAGE CODE 16236		DWG NO. V62/14644
		REV	С	PAGE 21

Case	outline	Х
------	---------	---

Terminal number	Terminal symbol	Terminal number	Terminal symbol
1	P1.0/TA0.1/DMAE0/RTCCLK/A0*/CD0/VeREF-	40	AVCC
2	P1.1/TA0.2/TA1CLK/CDOUT/A1*/CD1/VeREF+	39	AVSS
3	P1.2/TA1.1/TA0CLK/CDOUT/A2*/CD2	38	PJ.5/XOUT
4	P3.0/A12*/CD12	37	PJ.4/XIN
5	P3.1/A13*/CD13	36	AVSS
6	P3.2/A14*/CD14	35	P2.4/TA1.0/UCA1CLK/A7*/CD11
7	P3.3/A15*/CD15	34	P2.3/TA0.0/UCA1STE/A6*/CD10
8	P1.3/TA1.2/UCB0STE/A3*/CD3	33	P2.7
9	P1.4/TB0.1/UCA0STE/A4*/CD4	32	DVCC
10	P1.5/TB0.2/UCA0CLK/A5*/CD5	31	DVSS
11	PJ.0/TDO/TB0OUTH/SMCLK/CD6	30	VCORE
12	PJ.1/TDI/TCLK/TB1OUTH/MCLK/CD7	29	P1.7/TB1.2/UCB0SOMI/UCB0SCL/TA1.0
13	PJ.2/TMS/TB2OUTH/ACLK/CD8	28	P1.6/TB1.1/UCB0SIMO/UCB0SDA/TA0.0
14	PJ.3/TCK/CD9	27	P3.7/TB2.2
15	P4.0/TB2.0	26	P3.6/TB2.1/TB1CLK
16	P4.1	25	P3.5/TB1.2/CDOUT
17	P2.5/TB0.0/UCA1TXD/UCA1SIMO	24	P3.4/TB1.1/TB2CLK/SMCLK
18	P2.6/TB1.0/UCA1RXD/UCA1SOMI	23	P2.2/TB2.2/UCB0CLK/TB1.0
19	TEST/SBWTCK	22	P2.1/TB2.1/UCA0RXD/UCA0SOMI/TB0.0
20	RST/NMI/SBWTDIO	21	P2.0/TB2.0/UCA0TXD/UCA0SIMO/TB0CLK/ACLK
NOTES:	Not available on MSP430ER5739-EP		

* Not available on MSP430FR5739-EP Exposed thermal pad connection to VSS recommended.

FIGURE 2. Terminal connections.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CAGE CODE 16236		DWG NO. V62/14644	
		REV	С	PAGE 22	

FIGURE 3. Functional block diagram.

DLA LAND AND MARITIME	SIZE	CAGE CODE		DWG NO.
	A	16236		V62/14644
COLUMBUS, OHIO		REV	С	PAGE 23

FIGURE 4. Typical Active mode supply currents, No Wait states.

DLA LAND AND MARITIME	SIZE	CAGE CODE		DWG NO.
	A	16236		V62/14644
COLUMBUS, OHIO		REV	С	PAGE 24

VOL LOW-LEVEL OUTPUT VOLTAGE-V

DLA LAND AND MARITIME	SIZE	CAGE CODE		DWG NO.
	A	16236		V62/14644
COLUMBUS, OHIO		REV	С	PAGE 25

VOL HGH-LEVEL OUTPUT VOLTAGE-V

FIGURE 8. Typical High-Level Output Current vs High-Level Output Voltage, V_{CC} = 3.0 V.

DLA LAND AND MARITIME	SIZE	CAGE CODE		DWG NO.
	A	16236		V62/14644
COLUMBUS, OHIO		REV	С	PAGE 26

FIGURE 10. SPI Master mode, CKPH = 1.

DLA LAND AND MARITIME	SIZE	CAGE CODE		DWG NO.
	A	16236		V62/14644
COLUMBUS, OHIO		REV	С	PAGE 27

FIGURE 12. SPI Slave mode, CKPH = 1.

DLA LAND AND MARITIME	SIZE	CAGE CODE		DWG NO.
	A	16236		V62/14644
COLUMBUS, OHIO		REV	С	PAGE 28

FIGURE 13. <u>I2C mode timing</u>.

FIGURE 14. Typical temperature sensor voltage.

DLA LAND AND MARITIME	SIZE	CAGE CODE		DWG NO.
	A	16236		V62/14644
COLUMBUS, OHIO		REV	С	PAGE 29

4. VERIFICATION

4.1 <u>Product assurance requirements</u>. The manufacturer is responsible for performing all inspection and test requirements as indicated in their internal documentation. Such procedures should include proper handling of electrostatic sensitive devices, classification, packaging, and labeling of moisture sensitive devices, as applicable.

5. PREPARATION FOR DELIVERY

5.1 <u>Packaging</u>. Preservation, packaging, labeling, and marking shall be in accordance with the manufacturer's standard commercial practices for electrostatic discharge sensitive devices.

6. NOTES

6.1 ESDS. Devices are electrostatic discharge sensitive and are classified as ESDS class 1 minimum.

6.2 <u>Configuration control</u>. The data contained herein is based on the salient characteristics of the device manufacturer's data book. The device manufacturer reserves the right to make changes without notice. This drawing will be modified as changes are provided.

6.3 <u>Suggested source(s) of supply</u>. Identification of the suggested source(s) of supply herein is not to be construed as a guarantee of present or continued availability as a source of supply for the item. DLA Land and Maritime maintains an online database of all current sources of supply at <u>https://landandmaritimeapps.dla.mil/programs/smcr/</u>.

Vendor item drawing administrative control number <u>1</u> /	Device manufacturer CAGE code	Vendor part number
V62/14644-01XE	01295	M430FR5739SRHATEP

<u>1</u>/ The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation.

CAGE code

Source of supply

01295

Texas Instruments, Inc. Semiconductor Group 8505 Forest Lane P.O. Box 660199 Dallas, TX 75243

DLA LAND AND MARITIME	SIZE	CAGE CODE		DWG NO.
	A	16236		V62/14644
COLUMBUS, OHIO		REV	С	PAGE 30