	REV	ISIONS																			
LTR					DE	SCRIP	TION						[DATE (YR-M	O-DA)		AF	PRO\	/ED	
A	Add PHN	device ty I	/pe 02. U	pe 02. Update boilerplate paragraphs to curre			currer	nt requi	rement	ts		13	3-05-2	8		Thor	nas M	Hess	;		
В	Upda	ate boilei	plate par	agraph	s to cu	rrent V	ID des	criptio	n req	uiremei	nts D	RH		22	2-09-20	6		Muhan	nmad /	A. Akb	ar
CURRENT DE HAS CHANGI DLA LAND AI COLUMBUS, Prepared in ac	ESIGN ED NA ND MA OHIO	I ACTIV AMES T ARITIM 43218	ITY CAC O: E -3990 h ASME	SE CO Y14.2	DE 16	5236												(endo	r Item	Draw	ving
Revision Status	of She	eets				1								1			1	1	1		
SHEET		$\left \right $								+											
REV	В	B	3 B	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В		-
SHEET	1	2 3	3 4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20		
		. 1	PREF	ARE	D BY	ı		i			ı) ANI	D MA	RITI	ME	ı		1
PMIC N/A Phu H. Nguyen						ŀ	CC Ittps)LUM : <mark>//ww</mark>	BUS w.dla	, OHI <mark>a.mil/</mark>	O 43 <mark>land</mark> a	3218- <mark>andn</mark>	3990 <mark>nariti</mark>	<u>me</u>							
Original date of			CHEC	KED	BY					TITLE											
drawing			Phu H	l. Ngu	iyen					MICF	ROCI	RCL	JIT, [DIGIT	TAL,	QUA	DC	HAN	NEL,		
00 10 01					עם ח					14 B	T, 12	25 M	SPS		C SUI	THS		۹L L۱	/DS		
00-10-21			Thom	as M.	Hess	5				001	PUL	, iviO	INOL	IIHI	6 21		IN				
			SIZ		(CAGE	CO	DE		DWG	NO.										
			A			16	<u>236</u>							<u>V6</u> 2	2/08	<u>862</u>	8				
			RE	V			В			PAC	GE	1	OF	20						·	

AMSC N/A

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

1. SCOPE

1.1 <u>Scope</u>. This drawing documents the general requirements of a high performance quad channel, 14 bit, 125 MSPS ADC with serial LVDS outputs microcircuit for device type 01 and a quad channel, 14 bit, 105 MSPS ADC with serial LVDS outputs microcircuit for device type 02, with an operating temperature range of -55°C to +125°C.

1.2 <u>Vendor Item Drawing Administrative Control Number</u>. The manufacturer's PIN is the item of identification. The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation:

	V62/0862 Drawing number	28 - 	01 Device type See 1.2.1)	X Case outline (See 1.2.2)	A Lead finish (See 1.2.3)
1.2.1	Device type(s).				
	Device type	Generic		<u>C</u>	ircuit function
	01 02	ADS6445-EP ADS6444-EP		Quad channel, 14 bit, Quad channel, 14 bit,	125 MSPS ADC with serial LVDS outputs 105 MSPS ADC with serial LVDS outputs
1.2.2	Case outline(s). The	e case outlines are as sp	ecified herein		
	Outline lett	<u>er Nur</u>	mber of pins		Package style
	Х		64		Plastic quad flatpack
1.2.3	Lead finishes. The le	ead finishes are as spec	ified below or	other lead finishes as p	provided by the device manufacturer:
		Finish designator		<u>Material</u>	

A B C	Hot solder dip Tin-lead plate Gold plate
A	Hot solder dip
В	Tin-lead plate
С	Gold plate
D	Palladium
E	Gold flash palladium
Z	Other

1.3 Absolute maximum ratings. 1/

0......

Supply voltage range.	
ADVDD	0.3 V to 3.9 V
LVDD	0.3 V to 3.9 V
Voltage between AGND and DGND	0.3 V to 0.3 V
Voltage between AVDD to LVDD	0.3 V to 3.3 V
Voltage applied to external pin, VCM	0.3 V to 2.0 V
Voltage applied to analog input pins	0.3 V to minimum (3.6, AVDD + 0.3) V
Operating junction temperature range, TJ	150°C
Storage temperature range, T _{STG}	65°C to 150°C
Lead temperature 1.6 mm (1/16") from the case for 10 seconds	220°C

^{1/} Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

DLA LAND AND MARITIME	SIZE	CAGE CODE	DWG NO.	
	A	16236	V62/08628	
COLUMBUS, OHIO		REV B	PAGE 2	

1.4 Thermal characteristics.

Thermal metric <u>2</u> /	Case outline X	Units
Junction to ambient thermal resistance, θ_{JA} <u>3</u> /	23.6	°C/W
Junction to case (top) thermal resistance, θ_{JCtop} <u>4</u> /	7.7	
Junction to board thermal resistance, θ_{JB} <u>5</u> /	3	
Junction to top characterization parameter, Ψ_{JT} <u>6</u> /	0.1	
Junction to board characterization parameter, Ψ_{JB} <u>7</u> /	3	
Junction to case (bottom) thermal resistance, θ_{JCbot} <u>8</u> /	0.3	

1.5 Recommended operating conditions.

SUPPLIES	
Analog supply voltage, AVDD	. 3.0 V to 3.6 V
LVDS buffer supply voltage, LVDD	. 3.0 V to 3.6 V
ANALOG INPUTS	
Differential input voltage range	. 2.0 V _{P-P} Typical
Input common-mode voltage	. 1.5 V ±0.1 Typical
Voltage applied on VCM in external reference mode	1.45 V to 1.55 V
CLOCK INPUTS	
Input clock sample rate, F _{srated} :	
Device type 01	.5 to 125 MSPS
Device type 02	.5 to 105 MSPS
Input clock amplitude differential (VCLKP – VCLKM):	
Minimum sine wave, ac coupled	. 0.4 V _{P-P}
LVPECL, ac coupled	. ±0.8 V _{P-P} Typical
LVDS, ac coupled	±0.35 V _{P-P} Typical
LVCMOS, ac coupled	3.3 V _{P-P} Typical
Input clock duty cycle	. 35% to 65%
DIGITAL INPUTS	
Maximum external load capacitance from each output pin to DGND, CLOAD:	
Without internal termination	. 5 pF Typical
With internal termination	10 pF Typical
Differential load resistance (external) between the LVDS output pairs, RLOAD	. 100 Ω Typical

^{8/} The junction to case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specified JEDEC- standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

DLA LAND AND MARITIME	SIZE	CAGE CODE	DWG NO.	
	A	16236	V62/08628	
COLUMBUS, OHIO		REV B	PAGE 3	

^{2/} For more information about traditional and new thermal metrics, see manufacturer data.

^{3/} The junction to ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K-board, as specified in JESD51-7, in an environment described in JESD51-2a.

^{4/} The junction to case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specified JEDECstandard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

^{5/} The junction to board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.

 $[\]underline{6}$ / The junction to top characterization parameter, Ψ_{JT} , estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θ_{JA} , using a procedure described in JESD51-2a (sections 6 and 7).

 $[\]underline{7}$ The junction to board characterization parameter, Ψ_{JB} , estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θ_{JA} , using a procedure described in JESD51-2a (sections 6 and 7).

2. APPLICABLE DOCUMENTS

SOLID STATE TECHNOLOGY ASSOCIATION (JEDEC)

JEP 95	_	Registered and Standard Outlines for Semiconductor Devices
JESD 51	_	Methodology for the Thermal Measurement of Component Packages (Single Semiconductor Device).
JESD 51-2a	_	Integrated Circuits Thermal Test Method Environment Conditions – Natural Convection (Still Air)
JESD 51-7	_	High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
JESD 51-8	-	Integrated Circuits Thermal Test Method Environment Conditions – Junction-to-board

(Copies of these documents are available online at https://www.jedec.org.)

AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI) STANDARD

ANSI SEMI STANDARD G30-88 – Test Method for Junction-to-Case Thermal Resistance Measurements for Ceramic Packages

(Copies of these documents are available online at https://www.ansi.org.)

3. REQUIREMENTS

3.1 <u>Marking</u>. Parts shall be permanently and legibly marked with the manufacturer's part number as shown in 6.3 herein and as follows:

- A. Manufacturer's name, CAGE code, or logo
- B. Pin 1 identifier
- C. ESDS identification (optional)

3.2 <u>Unit container</u>. The unit container shall be marked with the manufacturer's part number and with items A and C (if applicable) above.

3.3 <u>Electrical characteristics</u>. The maximum and recommended operating conditions and electrical performance characteristics are as specified in 1.3, 1.4, and table I herein.

- 3.4 Design, construction, and physical dimension. The design, construction, and physical dimensions are as specified herein.
- 3.5 Diagrams.
- 3.5.1 <u>Case outline</u>. The case outline shall be as shown in 1.2.2 and figure 1.
- 3.5.2 <u>Terminal connections</u>. The terminal connections shall be as shown in figure 2.
- 3.5.3 <u>Terminal description</u>. The terminal description shall be as shown in figure 3.
- 3.5.4 Functional block diagram. The functional block diagram shall be as shown in figure 4.
- 3.5.5 Latency. The latency shall be as shown in figure 5.
- 3.5.6 LVDS timing. The LVDS timing shall be as shown in figure 6.
- 3.5.7 <u>Reset timing</u>. The Reset timing shall be as shown in figure 7.
- 3.5.8 Serial interface timing. The serial interface timing shall be as shown in figure 8.

DLA LAND AND MARITIME	SIZE	CAGE CODE	DWG NO.	
	A	16236	V62/08628	
COLUMBUS, OHIO		REV B	PAGE 4	

Test	Symbol	ymbol Device type 01			Device	Unit		
		Fs = 12	5 MSPS		F _s = 105 MSPS			
		Min	TYP	Max	Min	TYP	Max	
Resolution			14			14		Bits
Analog input			1		T	1		1
Differential input voltage range			2.0			2.0		VPP
Differential input capacitance			7			7		pF
Analog input bandwidth			500			500		MHz
Analog input common mode current (per input pin of each ADC)			155			130		μA
Reference voltages			•					
Internal reference bottom voltage	VREFB		1.0			1.0		V
Internal reference top voltage	VREFT		2.0			2.0		V
Internal reference error (VREFT-VREFB)	ΔV_{REF}	0.985	1	1.015	0.985	1	1.015	V
Common mode output voltage	VCM		1.5			1.5		V
VCM output current capability			±4			±4		mA
DC accuracy			•					
No missing code			Assured			Assured		
Offset error, across devices and across channels within a device	Eo	-15	±2	15	-15	±2	15	mV
Offset error temperature coefficient, across devices and across channels within a device			0.05			0.05		mV/°C
There are two source of gain error – internal refere	nce inaccura	cy and ch	annel gain ei	ror				I]
Gain error due to internal reference inaccuracy alone, $(\Delta V_{REF} / 2.0)\%$	E_{GREF}	-0.75	0.1	0.75	-0.75	0.1	0.75	%FS
Reference gain error temperature coefficient			0.0125			0.0125		∆%/°C
Gain error of channel alone, across devices and across channels within a device	Egchan		±0.3			±0.3		%FS
Channel gain error temperature coefficient, across devices and across channels within a device			0.005			0.005		∆%/°C
Differential nonlinearity, Fin = 50 MHz	DNL	-0.99	±0.6	2.0	-0.99	±0.6	2.0	LSB
Integral nonlinearity, Fin = 50 MHz	INL	-5	±3	5	-5	±3	5	LSB
DC power supply rejection ratio	PSRR		0.5			0.5		mV/V
Power supply			-	-				
Total supply current	lcc		502			410		mA
Analog supply current	IAVDD		410			322		mA
LVDS supply current	I _{LVDD}		92			88		mA
Total power			1.65	1.8		1.35	1.5	W
Power down (within input clock stopped)			77	150		77	150	mW

TABLE I. Electrical performance characteristics. 1/ 2/

DLA LAND AND MARITIME	SIZE	CAGE CODE	DWG NO.
	A	16236	V62/08628
COLUMBUS, OHIO		REV B	PAGE 5

Test	Symbol	Cor	nditions <u>2</u> /	Device	type 01		Device type 02			Unit
		unless oth	nerwise specified	Fs = 12	5 MSPS		Fs = 10	5 MSPS		
				Min	TYP	Max	Min	TYP	Max	
Dynamic AC ch	aracteristi	CS		-	-	1	1		r	
Signal to noise	SNR	Fin = 10 MHz	HZ		73.7			73.8		dBFS
ratio		Fin = 50 MHz	68.5	73.1			73.2			
		Fin = 70 MHz			72.7		69	73		
		Fin = 100 MHz			72.1			72.2		
		Fin = 170 MHz	0 dB gain		69.9			70.2		
		3.5 dB Coarse gain		69.4			69.7			
		Fin =230 MHz	0 dB gain		68.7			68.8		
			3.5 dB Coarse gain		68.1			68.2		
Signal to noise	SINAD	Fin = 10 MHz			73.4			73.4		dBFS
and distortion		Fin = 50 MHz		67.75	72.3			71.7		
ratio		Fin = 70 MHz			71.2		68.5	72		
		Fin = 100 MHz			71.8			72		
		Fin = 170 MHz	0 dB gain		67.9			69.8		
			3.5 dB Coarse gain		68.3			69.3		
		Fin =230 MHz	0 dB gain		67.8			67.7		
		3.5 dB Coarse gain		67.9			67.6			
Output noise	RMS	Inputs tied to common-mode			1.05			1.05		LSB
Spurious free	SFDR	Fin = 10 MHz			87			91		dBc
dynamic range		Fin = 50 MHz		69	81			80		
		Fin = 70 MHz			78		74	81		
		Fin = 100 MHz			86			88		
		Fin = 170 MHz	0 dB gain		76			79		
		-	3.5 dB Coarse gain		79			83		
		Fin =230 MHz	0 dB gain		77			77		
			3.5 dB Coarse gain		80			80		
Second	HD2	Fin = 10 MHz	j		93			94		dBc
harmonic		Fin = 50 MHz		69	87			88		1
		Fin = 70 MHz			87		74	88		-
		Fin = 100 MHz			89			90		
		Fin = 170 MHz	0 dB gain		83		İ	84		1
			3.5 dB Coarse gain	1	85		ł	86		1
		Fin =230 MHz	0 dB gain	1	80		ł	81		1
			3.5 dB Coarse gain		82			83		1
	1	1	Jo. o ub obarse gain	1	02	1	1	00		1

TABLE I. <u>Electrical performance characteristics</u> – Continued.

DLA LAND AND MARITIME	SIZE	CAGE CODE	DWG NO.
	A	16236	V62/08628
COLUMBUS, OHIO		REV B	PAGE 6

Test	Symbol	Conditi	ons <u>2</u> /	Device	type 01		Device	e type 02		Unit
		unless other	vise specified	Fs = 12	F _s = 125 MSPS		Fs = 10	5 MSPS		
				Min	TYP	Max	Min	TYP	Max	
Dynamic AC ch	aracteristic	s - continued			1	r				
Third harmonic	Third harmonic HD3		Fin = 10 MHz		87			91		dBc
		Fin = 50 MHz		69	81			80		
		Fin = 70 MHz			78		74	81		
		Fin = 100 MHz			86			88		
		Fin = 170 MHz	0 dB gain		76			79		
			3.5 dB Coarse gain		79			83		
		Fin =230 MHz	0 dB gain		77			77		
			3.5 dB Coarse gain		80			80		
Worst harmonic		Fin = 10 MHz			91			91		dBc
(other than		Fin = 50 MHz	Fin = 50 MHz		87			87		
HD2, HD3)		Fin = 100 MHz			90			91		
		Fin = 170 MHz			88			88		
		Fin = 230 MHz			87			87		
Total harmonic	THD	Fin = 10 MHz			86			89.5		dBc
distortion		Fin = 50 MHz		69	80			80		
		Fin = 100 MHz			84.5		72	79		
		Fin = 170 MHz			73.5			86		
		Fin = 230 MHz			74			77		
Effective	ENOB	Fin = 50 MHz		10.95	11.7					Bits
number of bits		Fin = 70 MHz					11.3	11.7		
2-Tone inter-	IMD	F1 = 46.09 MHz,			88			90		dBFS
modulation		F2 = 50.09 MHz								
distortion		F1 = 185.09 MHz,			86			88		
-		F2 = 190.09 MHz								
Cross talk		Near channel Cross			90			92		dBc
		talk signal								
					100			105		
		Far channel Cross			103			105		
		italk signal								
		Recovery to within			1			1		Clock
recoverv		1% (of final value)			1			I.		cvcles
		for 6-dB overload								0,0.00
		with sine wave input								
Power supply	AC PSRR	< 100 MHz signal,			35			35		dBc
rejection ratio		100 mV _{PP} on AVDD								
1		supply								

TABLE I. Electrical performance characteristics - Continued.

DLA LAND AND MARITIME	SIZE	CAGE CODE	DWG NO.	
	A	16236	V62/08628	
COLUMBUS, OHIO		REV B	PAGE 7	

Test	Symbol	Conditions <u>3</u> /	Device	e type 01		Device	e type 02		Unit
		unless otherwise specified	F _s = 12	25 MSPS		F _s = 105 MSPS			
			Min	TYP	Max	Min	TYP	Max	
Digital inputs	-		_			_			
High level input voltage			2.4			2.4			V
Low level input voltage					0.8			0.8	V
High level input current				10			10		μA
Low level input current				10			10		μA
Input capacitance				4			4		pF
Digital outputs									
High level output voltage				1375			1375		mV
Low level output voltage				1025			1025		mV
Output differential voltage	Vod		250	350	450	250	350	450	mV
Output offset voltage	Vos	Common mode voltage of OUTP and OUTM		1200			1200		mV
Output capacitance		Output capacitance inside the device, from either output to ground		2			2		pF
		TIMING SPECIFICA	TIONS	5/6/				J	
Aperture jitter	tJ	Uncertainty in the sampling instant		250			250		fs ms
Interface: 2-wire, DDR bit	clock, 14	serialization							÷
Data setup time <u>8</u> / <u>9</u> / <u>10</u> /	t _{su}	From data cross over to bit clock cross over		0.55			0.65		ns
Data hold time <u>8/9/10/</u>	t _h	From bit clock cross over to data cross over		0.58			0.7		ns
Clock propagation delay <u>10</u> /	t _{pd_clk}	Input clock rising edge cross over to frame clock rising edge cross over		4.4			4.4		ns
Bit clock cycle-cycle jitter <u>9</u> /				350			350		ps pp
Frame clock cycle-cycle jitter <u>9</u> /				75			75		ps pp

TABLE I. <u>Electrical performance characteristics</u> – Continued.

DLA LAND AND MARITIME	SIZE	CAGE CODE	DWG NO.
	A	16236	V62/08628
COLUMBUS, OHIO		REV B	PAGE 8

Test	Symbol	Conditions <u>3</u> /	Device	type 01		Device	type 02		Unit
		unless otherwise specified	Fs = 12	5 MSPS		F _s = 105 MSPS			
			Min	TYP	Max	Min	TYP	Max	
The following specification	ons apply	for 5 MSPS ≤ Fs ≤ 125 MSPS an	d all inte	rface op	tions	-	-		
Aperture delay	t∧	Delay from input clock rising edge to the actual sampling instant		2			2		ns
Aperture delay variation		Channel-channel within same device		±80			±80		ps
ADC latency <u>11</u> /		Time for a sample to propagate to ADC outputs, See FIGURE 5		12			12		Clock cycles
Wake up time		Time to valid data after coming out of global power down		100			100		μs
		Time to valid data after input clocks is re-started		100			100		μs
		Time to valid data after coming out of channel standby		200			200		Clock cycles
Data rise time	t _{RISE}	From -100 mV to +100 mV		100			100		ps
Data fall time	t _{FALL}	From +100 mV to -100 mV		100			100		
Bit clock and frame clock rise time	trise	From -100 mV to +100 mV		100			100		
Bit clock and frame clock fall time	tfall	From +100 mV to -100 mV		100			100		
LVDS bit clock duty cycle				50%			50%		
LVDS frame clock duty cycle				50%			50%		

TABLE I. Electrical performance characteristics - Continued.

DLA LAND AND MARITIME	SIZE	CAGE CODE	DWG NO.
	A	16236	V62/08628
COLUMBUS, OHIO		REV B	PAGE 9

TABLE I.	Electrical	performance	characteristics -	- Continued.

Test	Symbol	Conditions <u>12</u> / unless otherwise specified	Device type	Limits			Unit
				Min	TYP	Max	
	SERIAL	INTERFACE TIMING CHARACTERI	STICS				
SCLK frequency, f _{SCLK} = 1/t _{SCLK}	f _{SCLK}		All	>DC		20	MHz
SEN to SCLK setup time	tsloads				25		ns
SCLK to SEN hold time	tsloadh				25		
SDATA setup time	t _{DSU}				25		
SDATA hold time	t _{DH}				25		
Time taken for register write to take effect after 16 th SCLK falling edge					100		
		RESET TIMING					
Power on delay time	t1	Delay from power-up of AVDD and LVDD to RESET pulse active	All		5		ms
Reset pulse width	t ₂	Pulse width of active RESET signal			10		ns
Register writer delay time	t ₃	Delay from RESET disable to SEN active			25		ns
Power up delay time	t _{PO}	Delay from power-up of AVDD and LVDD to output stable			6.5		ms

1/ Testing and other quality control techniques are used to the extent deemed necessary to assure product performance over the specified temperature range. Product may not necessarily be tested across the full temperature range and all parameters may not necessarily be tested. In the absence of specific parametric testing, product performance is assured by characterization and/or design.

- <u>2</u>/ Typical values are at 25°C, min and max values are across the full junction temperature range T_{J,MIN} = -55°C to T_{J,MAX} = 125°C, AVDD = LVDD = 3.3 V, maximum rated sampling frequency, 50% clock duty cycle, -1 dBFS differential analog input, internal reference mode (unless otherwise noted).
- 3/ The DC specifications refer to the condition where the digital outputs are not switching, but are permanently at a valid logic level 0 or 1 AVDD = LVDD = 3.3 V, I₀ = 3.5 mA, RLOAD = 100 Ω <u>4</u>/. All LVDS specifications are characterized, but not tested at production.
- $\frac{4}{10}$ refers to the LVDS buffer current setting; R_L is the external differential load resistance between the LVDS output pair.
- 5/ Timing parameters are ensured by design and characterization and not tested in production.
- $\frac{6}{}$ Typical values are at 25°C, min and max values are across the full junction temperature range T_{J,MIN} = -55°C to T_{J,MAX} = 125°C, AVDD = LVDD = 3.3 V, maximum rated sampling frequency, sine wave input clock, 1.5 Vpp clock amplitude, C_L = 5 pF $\frac{7}{}$, I₀ = 3.5 mA, R_L = 100 Ω $\frac{4}{}$, no internal termination, unless otherwise noted.
- 7/ C_L is the external single ended load capacitance between each output pin and ground.
- $\overline{8}$ / Timing parameters are measured at the end of a 2 inch PCB trace (100 Ω characteristic impedance) terminated by R_L and C_L.
- 9/ Setup and hold time specifications take into account the effect of jitter on the output data and clock.
- 10/ Refer to output timing application section in manufacturer data for timing at lower sampling frequencies and other interface options.
- 11/ Note that the total latency = ADC latency + internal serialized latency. The serialized latency depends on the interface option selected as in manufacturer data.
- <u>12</u>/ Typical values are at 25°C, min and max values are across the full junction temperature range $T_{J,MIN}$ = -55°C to $T_{J,MAX}$ = 125°C, AVDD = LVDD = 3.3 V, unless otherwise noted.

DLA LAND AND MARITIME	SIZE	CAGE CODE	DWG NO.	
	A	16236	V62/08628	
COLUMBUS, OHIO		REV B	PAGE 10	

Dimension								
Symbol	Milli	meters	Symbol	Millimeters				
	Min	Max		Min	Max			
А	0.80	1.00	b1	0.30	0.50			
A1	0.20	REF	D/E	8.85	9.15			
A2	0.00	0.05	D1/E1	7.50 REF				
b	0.18	0.30	e1	0.50	BSC			

NOTES:

- All linear dimensions are in millimeters. Dimensioning and tolerance per ASME Y14.5 1994.
 This drawing is subject to change without notice.
 Quad flatpack, No-leads (QFN) package configuration.

- The package thermal pad must be soldered to the board for thermal and mechanical performance. See manufacturer data for 4. details regarding the exposed thermal pad dimensions.

FIGURE 1. Case outline.

DLA LAND AND MARITIME	SIZE	CAGE CODE	DWG NO.
	A	16236	V62/08628
COLUMBUS, OHIO		REV B	PAGE 11

Case X (2-Wire interface)

Terminal	Terminal	Terminal	Terminal	Terminal	Terminal	Terminal	Terminal
		17				10	Symbol
I		17	AVDD	33	AGND	49	LVDD
2	DA1_M	18	AGND	34	INC_P	50	DC1_P
3	DA0_P	19	AVDD	35	INC_M	51	DC1_M
4	DA0_M	20	NC	36	AGND	52	DC0_P
5	CAP	21	CFG4	37	IND_P	53	DC0_M
6	RESET	22	VCM	38	IND_M	54	LGND
7	LVDD	23	AGND	39	AGND	55	FCLKP
8	AGND	24	CLKP	40	AVDD	56	FCLKM
9	AVDD	25	CLKM	41	PDN	57	DCLKP
10	AGND	26	AGND	42	SEN	58	DCLKM
11	INA_M	27	AVDD	43	SDATA	59	LGND
12	INA_P	28	CFG3	44	SCLK	60	DB1_P
13	AGND	29	CFG2	45	DD1_P	61	DB1_M
14	INB_M	30	CFG1	46	DD1_M	62	DB0_P
15	INB_P	31	AGND	47	DD0_P	63	DB0_M
16	AGND	32	AVDD	48	DD0_M	64	LVDD

Case X (1-Wire interface)

Terminal number	Terminal symbol	Terminal number	Terminal symbol	Terminal number	Terminal symbol	Terminal number	Terminal symbol
1	UNUSED	17	AVDD	33	AGND	49	LVDD
2	UNUSED	18	AGND	34	INC_P	50	DD_P
3	UNUSED	19	AVDD	35	INC_M	51	DD_M
4	UNUSED	20	NC	36	AGND	52	DC_P
5	CAP	21	CFG4	37	IND_P	53	DC_M
6	RESET	22	VCM	38	IND_M	54	LGND
7	LVDD	23	AGND	39	AGND	55	FCLKP
8	AGND	24	CLKP	40	AVDD	56	FCLKM
9	AVDD	25	CLKM	41	PDN	57	DCLKP
10	AGND	26	AGND	42	SEN	58	DCLKM
11	INA_M	27	AVDD	43	SDATA	59	LGND
12	INA_P	28	CFG3	44	SCLK	60	DB_P
13	AGND	29	CFG2	45	UNUSED	61	DB_M
14	INB_M	30	CFG1	46	UNUSED	62	DA_P
15	INB_P	31	AGND	47	UNUSED	63	DA_M
16	AGND	32	AVDD	48	UNUSED	64	LVDD

FIGURE 2. Terminal connections.

DLA LAND AND MARITIME	SIZE	CAGE CODE	DWG NO.
	A	16236	V62/08628
COLUMBUS, OHIO		REV B	PAGE 12

Pin Assignments (2-Wire interface)

Terminal		I/O	No. of	Description
Name	Number		pins	
Supply and	ground Pins	-	-	
AVDD	9, 17, 19, 27, 32, 40		6	Analog power supply
AGND	8,10, 13 16, 18, 23 26, 31, 33 36, 39		11	Analog ground
LVDD	7, 49, 64		3	Digital power supply
LGND	54, 59		2	Digital ground
Input pins	-	-	-	
CLKP, CLKM	24, 25	-	2	Differential input clock pair
INA_P, INA_M	12, 11	-	2	Differential input signal pair, channel A. If unused, the pins should be tied to VCM. Do not float
INB_P, INB_M	15, 14	Ι	2	Differential input signal pair, channel B. If unused, the pins should be tied to VCM. Do not float
INC_P, INC_M	34, 35	I	2	Differential input signal pair, channel C. If unused, the pins should be tied to VCM. Do not float
IND_P, IND_M	37, 38	Ι	2	Differential input signal pair, channel D. If unused, the pins should be tied to VCM. Do not float
CAP	5	I	1	Connect 2-nF capacitor from pin to ground
SCLK	44	I	1	This pin functions as serial interface clock input when RESET is low. When RESET is <i>high</i> , it controls DESKEW, SYNC and global POWER DOWN modes (along with SDATA). Refer to manufacturer data for description. This pin has an internal pull-down resistor
SDATA	43	I	1	This pin functions as serial interface data input when RESET is low. When RESET is <i>high</i> , it controls DESKEW, SYNC and global POWER DOWN modes (along with SCLK). Refer to manufacturer data for description. This pin has an internal pull-down resistor.
SEN	42	I	1	This pin functions as serial interface enable input when RESET is low. When RESET is <i>high</i> , it controls coarse gain and internal/external reference modes. Refer to manufacturer data for description. This pin has an internal pull-up resistor.
RESET	6	I	1	Serial interface reset input.
				When using the serial interface mode, the user MUST initialize internal registers through hardware RESET by applying a high-going pulse on this pin or by using software reset option. Refer to the Serial Interface section in manufacturer data. In parallel interface mode, tie RESET permanently <i>high</i> . (SCLK, SDATA and SEN function as parallel control pins in this mode). The pin has an internal pull-down resistor to ground.
PDN	41	I	1	Global power down control pin.
CFG1	30	I	1	Parallel input pin. It controls 1-wire or 2-wire interface and DDR or SDR bit clock selection. Refer to manufacturer data for description. Tie to AVDD for 2-wire interface with DDR bit clock.

FIGURE 3. Terminal description (2 wire interface).

DLA LAND AND MARITIME	SIZE	CAGE CODE	DWG NO.
	A	16236	V62/08628
COLUMBUS, OHIO		REV B	PAGE 13

Pin Assignments (2-Wire interface) – Continued.

Terminal		I/O	No. of	Description	
Name	Number		pins		
Input pins-	Continued	-			
CFG2	29	Ι	1	Parallel input pin. It controls 14x or 16x serialization and SDR bit clock capture edge. Refer to manufacturer data for description. For 14x serialization with DDR bit clock, tie to ground or AVDD.	
CFG3	28	Ι	1	RESERVED pin - Tie to ground.	
CFG4	21	Ι	1	Parallel input pin. It controls data format and MSB or LSB first modes. Refer to manufacturer data for description	
VCM	22	I/O	1	Internal reference mode – common-mode voltage output. External reference mode – reference input. The voltage forced on this pin sets the internal reference.	
Output pins					
DA0_P, DA0_M	3, 4	0	2	Channel A differential LVDS data output pair, wire 0	
DA1_P, DA1_M	1, 2	0	2	Channel A differential LVDS data output pair, wire 1	
DB0_P, DB0_M	62, 63	0	2	Channel B differential LVDS data output pair, wire 0	
DB1_P, DB1_M	60, 61	0	2	Channel B differential LVDS data output pair, wire 1	
DC0_P, DC0_M	52, 53	0	2	Channel C differential LVDS data output pair, wire 0	
DC1_P, DC1_M	50, 51	0	2	Channel C differential LVDS data output pair, wire 1	
DD0_P, DD0_M	47, 48	0	2	Channel D differential LVDS data output pair, wire 0	
DD1_P, DD1_M	45, 46	0	2	Channel D differential LVDS data output pair, wire 1	
DCLKP, DCLKM	57, 58	0	2	Differential bit clock output pair	
FCLKP, FCLKM	55, 56	0	2	Differential frame clock output pair	
NC	20		1	Do Not Connect	
PAD	0		1	Connect to ground plane using multiple vias. Refer to Board Design consideration in manufacturer data section.	

FIGURE 3. <u>Terminal description (2 wire interface)</u> - Continued.

DLA LAND AND MARITIME	SIZE	CAGE CODE	DWG NO.
	A	16236	V62/08628
COLUMBUS, OHIO		REV B	PAGE 14

Pin Assignments (1-Wire interface)

Terminal		I/O	No. of	Description
Name	Number		pins	
Supply and	ground Pins			
AVDD	9, 17, 19, 27, 32, 40		6	Analog power supply
AGND	8,10, 13		11	Analog ground
	16, 18, 23			
	26, 31, 33			
	36, 39			
LVDD	7, 49, 64		3	Digital power supply
LGND	54, 59		2	Digital ground
Input pins				
CLKP, CLKM	24, 25	I	2	Differential input clock pair
INA_P, INA_M	12, 11	I	2	Differential input signal pair, channel A. If unused, the pins should be tied to VCM. Do not float
INB_P, INB_M	15, 14	I	2	Differential input signal pair, channel B. If unused, the pins should be tied to VCM. Do not float
INC_P, INC_M	34, 35	I	2	Differential input signal pair, channel C. If unused, the pins should be tied to VCM. Do not float
IND_P, IND_M	37, 38	I	2	Differential input signal pair, channel D. If unused, the pins should be tied to VCM. Do not float
CAP	5	I	1	Connect 2-nF capacitor from pin to ground
SCLK	44	I	1	This pin functions as serial interface clock input when RESET is low. When RESET is <i>high</i> , it controls DESKEW, SYNC and global POWER DOWN modes (along with SDATA). Refer to manufacturer data for description. This pin has an internal pull-down resistor
SDATA	43	I	1	This pin functions as serial interface data input when RESET is low. When RESET is <i>high</i> , it controls DESKEW, SYNC and global POWER DOWN modes (along with SCLK). Refer to manufacturer data for description. This pin has an internal pull-down resistor
SEN	42	I	1	This pin functions as serial interface enable input when RESET is low. When RESET is <i>high</i> , it controls coarse gain and internal/external reference modes. Refer to manufacturer data for description. This pin has an internal pull-up resistor.
RESET	6	I	1	Serial interface reset input.
				When using the serial interface mode, the user MUST initialize internal registers through hardware RESET by applying a high-going pulse on this pin or by using software reset option. Refer to the Serial Interface section in manufacturer data. In parallel interface mode, tie RESET permanently <i>high</i> . (SCLK, SDATA and SEN function as parallel control pins in this mode). The pin has an internal pull-down resistor to ground.
PDN	41	I	1	Global power down control pin.
CFG1	30		1	Parallel input pin. It controls 1-wire or 2-wire interface and DDR or SDR bit clock selection. Refer to manufacturer data for description. Tie to AVDD for 2-wire interface with DDR bit clock.

FIGURE 3. <u>Terminal description (1 wire interface)</u> - Continued.

DLA LAND AND MARITIME	SIZE	CAGE CODE	DWG NO.
	A	16236	V62/08628
COLUMBUS, OHIO		REV B	PAGE 15

Pin Assignments (1-Wire interface) – Continued.

Termi	nal	I/O	No. of	Description
Name	Number		pins	
Input pins- C	ontinued			
CFG2	29	Ι	1	Parallel input pin. It controls 14x or 16x serialization and SDR bit clock capture edge. Refer to manufacturer data for description. For 14x serialization with DDR bit clock, tie to ground or AVDD.
CFG3	28	I	1	RESERVED pin - Tie to ground.
CFG4	21	I	1	Parallel input pin. It controls data format and MSB or LSB first modes. Refer to manufacturer data for description
VCM	22	I/O	1	Internal reference mode – common-mode voltage output. External reference mode – reference input. The voltage forced on this pin sets the internal reference.
Output pins				
DA_P, DA_M	62, 63	0	2	Channel A differential LVDS data output pair.
DB_P, DB_M	60, 61	0	2	Channel B differential LVDS data output pair.
DC_P, DC_M	52, 53	0	2	Channel C differential LVDS data output pair.
DD_P, DD_M	50, 51	0	2	Channel D differential LVDS data output pair.
DCLKP, DCLKM	57, 58	0	2	Differential bit clock output pair
FCLKP, FCLKM	55, 56	0	2	Differential frame clock output pair
UNSUSED	1-4, 45-48			These pins are unused in the 1-wire interface. Do not connect
NC	20		1	Do Not Connect
PAD	0		1	Connect to ground plane using multiple vias. Refer to Board Design consideration in manufacturer data section.

FIGURE 3. Terminal description (1 wire interface) - Continued.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CAGE CODE 16236	DWG NO. V62/08628
		REV B	PAGE 16

FIGURE 4. Functional block diagram.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CAGE CODE 16236	DWG NO. V62/08628
		REV B	PAGE 17

FIGURE 5. Latency.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CAGE CODE 16236	DWG NO. V62/08628
		REV B	PAGE 18

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CAGE CODE 16236	DWG NO. V62/08628
		REV B	PAGE 19

4. VERIFICATION

4.1 <u>Product assurance requirements</u>. The manufacturer is responsible for performing all inspection and test requirements as indicated in their internal documentation. Such procedures should include proper handling of electrostatic sensitive devices, classification, packaging, and labeling of moisture sensitive devices, as applicable.

5. PREPARATION FOR DELIVERY

5.1 <u>Packaging</u>. Preservation, packaging, labeling, and marking shall be in accordance with the manufacturer's standard commercial practices for electrostatic discharge sensitive devices.

6. NOTES

6.1 ESDS. Devices are electrostatic discharge sensitive and are classified as ESDS class 1 minimum.

6.2 <u>Configuration control</u>. The data contained herein is based on the salient characteristics of the device manufacturer's data book. The device manufacturer reserves the right to make changes without notice. This drawing will be modified as changes are provided.

6.3 <u>Suggested source(s) of supply</u>. Identification of the suggested source(s) of supply herein is not to be construed as a guarantee of present or continued availability as a source of supply for the item. DLA Land and Maritime maintains an online database of all current sources of supply at <u>https://landandmaritimeapps.dla.mil/programs/smcr/</u>.

Vendor item drawing administrative control number <u>1</u> /	Device manufacturer CAGE code	Vendor part number	Top side marking
V62/08628-01XE	01295	ADS6445MRGCTEP	6445EP
V62/08628-02XE	01295	ADS6444MRGCTEP	6444EP

<u>1</u>/ The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation.

CAGE code

01295

Source of supply

Texas Instruments, Inc. Semiconductor Group 8505 Forest Lane P.O. Box 660199 Dallas, TX 75243

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CAGE CODE 16236	DWG NO. V62/08628
		REV B	PAGE 20