	REVISIONS		
LTR	DESCRIPTION	DATE	APPROVED
A	Update boilerplate to current MIL-PRF-38535 requirements PHN	14-01-09	Thomas M. Hess
В	Update boilerplate to current MIL-PRF-38535 requirements PHN	21-07-15	Muhammad A. Akbar

CURRENT DESIGN ACTIVITY CAGE CODE 16236 HAS CHANGED NAMES TO: DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990

Prepared	d in ac	cordan	ce wit	h ASN	/IE Y1	4.24												Ve	ndor it	em dra	awing
REV																					
PAGE																					
REV																					
PAGE																					
REV ST	ATUS		REV			В	В	В	В	В	В	В	В	В	В	В	В	В	В		
OF PAG	ES		PAG	θE		1	2	3	4	5	6	7	8	9	10	11	12	13	14		
PMIC N/A				PREPARED BY Phu H. Nguyen						DEFENSE SUPPLY CENTER, COLUMBU COLUMBUS, OHIO						BUS					
Original date of drawing YY MM DD		ng	CHECKED BY Phu H. Nguyen																		
06-06-06		APPROVED BY Thomas M. Hess					TRANSCEIVERS, MONOLITHIC SILICON														
				SI	ZE	COD	E IDE	NT. N	0.			DWC	G NO.								
			4	A 16236					V62/06629												

PAGE 1 **OF** 14

AMSC N/A

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. .

REV

В

S

5962-V072-21

1. SCOPE

1.1 <u>Scope</u>. This drawing documents the general requirements of a high performance 3.3 V can transceivers microcircuit, with an operating temperature range of -55°C to +125°C.

1.2 <u>Vendor Item Drawing Administrative Control Number</u>. The manufacturers PIN is the item of identification. The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation:

<u>V62/06629</u>	-	<u>01</u>	¥	Ē
Drawing		Device type	Case outline	Lead finish
number		(See 1.2.1)	(See 1.2.2)	(See 1.2.3)

1.2.1 Device type(s).

Device type	Generic	Circuit function
01	SN65HVD230M-EP	3.3 V can transceiver

1.2.2 <u>Case outline(s)</u>. The case outlines are as specified herein.

<u>Outline letter</u>	Number of pins	JEDEC PUB 95	Package style
Х	8	MS-012	Plastic small outline

1.2.3 Lead finishes. The lead finishes are as specified below or other lead finishes as provided by the device manufacture:

<u>Finish designator</u>	<u>Material</u>
<u>Finish designator</u>	<u>Material</u>
A	Hot solder dip
B	Tin-lead plate
C	Gold plate
D	Palladium
E	Gold flash palladium
F	Tin-lead alloy
Z	Other

DEFENSE SUPPLY CENTER, COLUMBUS	SIZE	CODE IDENT NO.	DWG NO. V62/06629
COLUMBUS, OHIO	A	16236	
		REV B	PAGE 2

1.3 Absolute maximum ratings. 1/

Supply voltage range (VCC) Voltage range at any bus terminal (CANH or CANL) Voltage input range, transient pulse, CANH and CANL, through 100 Ω (See figure 12)	-0.3 V to 6.0 V -7.0 V to 16 V -25.0 V to 25.0 V
Input voltage range (VI) (D or R) Electrostatic discharge: Human body model <u>3</u> /	-0.5 V to V _{CC} + 0.5 V
CANH, CANL and GND	15 kV 2.5 kV
Continuous total power dissipation	see dissipation rating table
Storage temperature range (TSTG) Lead temperature 1.6 mm from case for 10 seconds Dissipation rating table:	-65°C to 150°C 260°C

Case outline	T _A ≤ 25°C	Derating factor <u>5</u> /	T _A = 70°C	T _A = 85°C	T _A = 125°C
	Power rating	Above T _A = 25°C	Power rating	Power rating	Power rating
Х	725 mW	5.8 mW/°C	464 mW	377 mW	145 mW

1.4 Recommended operating conditions.

Supply voltage range (VCC):	3.0 V to 3.6 V
Voltage at any bus terminal (common mode) (V _{IC})	-2.0 to 7.0 V 5/
Voltage at any bus terminal (separately) (VII)	-2.5 to 7.5 V
Minimum high level input voltage, (V _{IH}) D, R	2.0 V
Maximum low level input voltage, (VIL) D, R	0.8 V
Differential input voltage, (V _{ID}) See figure ?	-6.0 V to 6.0 V
V(RS)	0.0 V to Vcc
V _(RS) for standby or sleep	0.75 Vcc to Vcc
Rs wave shaping resistance	0 Ω to 100 kΩ
Minimum high level output current, (Iон):	
Driver	-40 mA
Receiver	-8 mA
Maximum low level output current, (Io∟):	
Driver	48 mA
Receiver	8 mA
Operating free-air temperature range (TA)	-55°C to +125°C

All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.

Tested in accordance with JEDEC Standard 22, test method A114-A.

Tested in accordance with JEDEC Standard 22, test method C101

- 2/ 3/ 4/ 5/ 6/ This is the inverse of the junction to ambient thermal resistance when board mounted and with no air flow.
- The algebraic convention, in which the least positive (most negative) limit is designated as minimum in used in this data.

DEFENSE SUPPLY CENTER, COLUMBUS COLUMBUS, OHIO	SIZE A	CODE	E IDENT NO. 16236	DWG NO. V62/06629	
		REV	В	PAGE	3

^{1/} Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2. APPLICABLE DOCUMENTS

JEDEC PUB 95	_	Registered and Standard Outlines for Semiconductor Devices
JESD22-C101	_	Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds
		of Microelectronic Components.
JESD22-A114	-	Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)

(Copies of these documents are available online at https://www.jedec.org).

3. REQUIREMENTS

3.1 <u>Marking</u>. Parts shall be permanently and legibly marked with the manufacturer's part number as shown in 6.3 herein and as follows:

- A. Manufacturer's name, CAGE code, or logo
- B. Pin 1 identifier
- C. ESDS identification (optional)

3.2 <u>Unit container</u>. The unit container shall be marked with the manufacturer's part number and with items A and C (if applicable) above.

- 3.3 <u>Electrical characteristics</u>. The maximum and recommended operating conditions and electrical performance characteristics are as specified in 1.3, 1.4, and table I herein.
- 3.4 Design, construction, and physical dimension. The design, construction, and physical dimensions are as specified herein.
- 3.5 Diagrams.
- 3.5.1 <u>Case outline</u>. The case outline shall be as shown in 1.2.2 and figure 1.
- 3.5.2 Terminal connections. The terminal connections shall be as shown in figure 2.
- 3.5.3 Function table. The Function table shall be as shown in figure 3.
- 3.5.4 Logic diagram. The logic diagram shall be as shown in figure 4.
- 3.5.5 <u>Equivalent input and output schematic diagrams</u>. Equivalent input and output schematics diagrams shall be as shown in figures 5.
- 3.5.6 <u>Voltage waveforms</u>. The voltage waveforms shall be as shown in figures 6-13.

DEFENSE SUPPLY CENTER, COLUMBUS COLUMBUS, OHIO	SIZE A	CODE I	IDENT NO. 6236	DWG NO. V62/06629	
		REV	В	PAGE	4

Test		Symbol	Conditions		Lin	nits	Unit	
						Min	Max	
Driver elect	trical chara	cteristics over re	commende	ed operating conditions (unless	otherwise noted)			
		Dominant	Vou	$V_1 = 0 V$,	CANH	2.45	Vcc	V
Bus output v	/oltage	Dominant	VOH	See figure 6 and 8	CANL	0.5	1.25	
	Ū	Recessive	Mai	$V_{1} = 3 V_{2}$	CANH	2.3 T	yp 2/	
		Recessive	VOL	See figure 6 and 8	CANL	2.3 T	vp 2/	
		Deminent	N/	V _I = 0 V. See figure 6	1 -	1.5	3	V
Differential of	output	Dominant	VOD(D)	$V_1 = 0 V$, See figure 7		1.2	3	
voltage		Decesive	N/	$V_1 = 3 V$. See figure 6		-120	12	mV
		Recessive	VOD(R)	$V_1 = 3 V$. No load		-0.5	0.05	V
High level in	put current	1	Ін	$V_1 = 2 V$		-30		μA
Low level in	put current		lu l	V ₁ = 0.8 V		-30		μA
		- := 1		$V_{CANH} = -2 V$		-250	250	mA
Short circuit	output curr	ent	IOS	$V_{CANI} = 7 V$		-250	250	
Output curre	ent		Co	See receiver				
<u>Cumple</u>	Standby	Device type 01		$V_{(RS)} = V_{CC}$			600	uА
Supply	All	Dominant	Icc	$V_1 = 0 V$. No load	Dominant		17	mA
devices Recessive			$V_1 = V_{CC}$. No load	Recessive		17		
Driver switching characteristics at $T_{A} = 25^{\circ}C$ (unless otherwise noted)				1	1			
Dremenstion delay time law to high layer			V _(RS) = 0 V			85	ns	
output	i uelay time,	low to high level	t _{PLH}	Rs with 10 k Ω to ground			190	7
				R _s with 100 k Ω to ground			870	
Dropogation	dolov timo	high to low loval	el t _{PHL}	V _(RS) = 0 V	C∟ = 50 pF,		130	
output	i delay time,	high to low level		R_{s} with 10 k Ω to ground	See figure 9		205	1
				R _s with 100 k Ω to ground			1200	
				$V_{(RS)} = 0 V$		35	Тур	
Pulse skew	$(t_{P(HL)} - t_{P(L)})$	P(LH)) tsk(p)		Rs with 10 k Ω to around		60 Typ		
			,	R_s with 100 k Ω to ground		370	Тур	
Differential of	output signa	l rise time	tr	$V_{\rm (ro)} = 0.V_{\rm c}$		25	100	
Differential of	output signa	l fall time	t _f	$\mathbf{v}(RS) = 0 \mathbf{v}$		40	80	
Differential of	output signa	l rise time	tr	Be with 10 kO to ground		75	160	
Differential output signal fall time		t _f			80	150		
Differential output signal rise time		tr	B ₂ with 100 kO to ground		350	1200		
Differential output signal fall time		t _f	Rs with 100 kg2 to ground		600	1200		
Receiver electrical characteristics over recomme		nded operating conditions (unle	ss otherwise noted)	•		•		
Positive going input threshold voltage		VIT+	3/			900	mV	
Negative going input threshold voltage		VIT-			500			
Hysteresis v	voltage (VIT+	- VIT-)	V _{hys}]		100 T	yp <u>2</u> /	1
High level o	utput voltag	e	Vон	-6 V ≤ V _{ID} ≤ 500 mV, I _O = - 8 mA	, See figure 10	2.4	[····-	
Low level output voltage		Vol	$900 \text{ mV} \le V_{\text{ID}} \le 6 \text{ V}, I_0 = 8 \text{ mA},$		0.4			

TABLE I. Electrical performance characteristics. 1/

See footnotes at end of table.

DEFENSE SUPPLY CENTER, COLUMBUS	SIZE	CODE IDENT NO.	DWG NO.	
COLUMBUS, OHIO	A	16236	V62/06629	
		REV B	PAGE 5	

Test	Symbol	Condition			nits	Unit
				Min	Max	
Receiver electrical characteristics over recomn	nended op	erating conditions (unless oth	erwise noted) – Cont	inued.		
		V _{IH} = 7 V		100	250	μA
Bus input current	h	$V_{IH} = 7 V, V_{CC} = 0 V$	Other input at 0 V,	100	350	
		V _{IH} = -2 V	D = 3 V	-200	-30	
		$V_{IH} = -2 V, V_{CC} = 0 V$		-100	-20	
CANH, CANL input capacitance	Ci	Pin to ground, $V_{(D)} = 3 V$, $V_1 = V$	= 0.4 sin(4E6πt) + 0.5	32 Ty	p <u>2</u> /	pF
Differential input capacitance	Cdiff	Pin to pin, $V_{(D)} = 3 V$, $V_1 = 0.4$	4 sin(4E6πt) + 0.5 V	16 Ty	p <u>2</u> /	
Differential input resistance	Rdiff	Pin to pin, $V_{(D)} = 3 V$	40	100	kΩ	
CANH, CANL input resistance	R⊤		20	50		
Supply current	lcc	See Driver				
Receiver switching characteristics at T _A = 25°C	(unless o	therwise noted)				
Propagation delay time, low to high level output	t PLH	See figure 11			55	ns
Propagation delay time, high to low level output	t PHL				55	
Pulse skew (t _{P(HL)} – t _{P(LH)})	t _{sk(p)}				10	
Output signal rise time	tr			1.5	Тур	
Output signal fall time	t _f			1.5	Тур	
		$V_{(RS)} = 0 V$			135	
Total loop delay, driver input to receiver output	t _(loop)	R_s with 10 k Ω to ground			175	
		R_s with 100 k Ω to ground			920	
Device control pin characteristics over recomm	ended ope	erating conditions (unless oth	erwise noted)		-	•
Wake up time from standby mode with Rs	t(wake)	See figure 13			1.5	μS
Reference output voltage	Vref	-5 μA < Ι _(Vref) < 5 μA		0.45 V _{CC}	0.55 V _{CC}	V
		-50 μA < Ι _(Vref) < 50 μA		0.4 Vcc	0.6 Vcc	
Input current for high speed	I _(RS)	V _(RS) < 1 V		-450	0	μA

TABLE I. Electrical performance characteristics - Continued

1/ Testing and other quality control techniques are used to the extent deemed necessary to assure product performance over the specified temperature range. Product may not necessarily be tested across the full temperature range and all parameters may not necessarily be tested. In the absence of specific parametric testing, product performance is assured by characterization and/or design.

All typical values are at 25°C and with a 3.3 V supply.

<u>2</u>/ <u>3</u>/ Receiver characteristics table Over Common Mode with $V_{(\mbox{\scriptsize RS})}$ at 1.2 V

Vic	VID	VCANH		RO	utput
-2 V	900 mV	-1.55 V	-2.45 V	L	
7 V	900 mV	8.45 V	6.5 5 V	L	Vон
1 V	6 V	4 V	-2 V	L	
4 V	6 V	7 V	1 V	L	
-2 V	500 mV	-1.75 V	-2.25 V	Н	
7 V	500 mV	7.25 V	6.75 V	Н	
1 V	-6V	-2 V	4 V	Н	Vol
4 V	-6 V	1 V	7 V	Н	
Х	Х	Open	Open	Н	

DEFENSE SUPPLY CENTER, COLUMBUS	SIZE	CODE IDENT NO.	IO. DWG NO. V62/06629		
COLUMBUS, OHIO	A	16236			
		REV B	PAGE 6		

	Dimension										
Symbol	Inc	Inches		Millimeters		Millimeters		Inc	hes	Millim	neters
	Min	Max	Min	Max	-	Min	Max	Min	Max		
А		.069		1.75	D	.189	.197	4.80	5.00		
A1	.004	.010	0.10	0.25	Е	.150	.157	3.80	4.00		
A2	.010) Тур	0.25	0.25 Typ		.228	.244	5.80	6.20		
b	.012	.020	0.31	0.51	е	.050	NOM	1.27	NOM		
С	.007	.010	0.17	0.25	L	.016	.050	0.40	1.27		

NOTES:

- 1. This drawing is subject to change without notice.
- 2. Body dimensions do not include mold flash or protrusion not to exceed 0.15 mm (0.006 inches) per side.

3. Falls within JEDEC MS-012 variation AA.

FIGURE 1. Case outline.

DEFENSE SUPPLY CENTER, COLUMBUS	SIZE	CODE IDENT NO.	DWG NO. V62/06629
COLUMBUS, OHIO	A	16236	
		REV B	PAGE 7

Case	Х
------	---

Terminal number	Terminal symbol	Description
1	D	Driver input
2	GND	Ground
3	Vcc	Supply voltage
4	R	Receiver output
5	V _{REF}	Reference output
6	CANL	Low bus output
7	CANH	High bus output
8	Rs	Stanby/slope control

FIGURE 2. Terminal connections.

		Driver				Re	ceiver			
Innut D	Р	Output		Output Due state		Output		Differential input	Р	Output D
input D	rts.	CANH	CANL	bus state		Differential input	Rs			
L	V _(RS) < 1.2 V	Н	L	Dominant		V _{ID} ≥ 0.9 V	Х	L		
Н		Z	Z	Recessive		$0.5 \text{ V} < \text{V}_{\text{ID}} < 0.9 \text{ V}$	Х	?		
Open	Х	Z	Z	Recessive		V _{ID} ≤ 0.5 V	Х	Н		
Х	V _(RS) > 0.75 V _{CC}	Z	Z	Recessive		Open	Х	Н		

Transceiver modes					
V _(RS) Operating mode					
$V_{(RS)} > 0.75 V_{CC}$	Standby				
10 kΩ to 100 kΩ to ground	Slope control				
V _(RS) < 1 V	High speed (no slope control)				

H = High level L = Low level X = Irrelevant ? = Indeterminate

FIGURE 3. Function table.

DEFENSE SUPPLY CENTER, COLUMBUS	SIZE	CODE IDENT NO.	DWG NO. V62/06629	
COLUMBUS, OHIO	A	16236		
		REV B	PAGE 8	

FIGURE 4. Logic diagram.

FIGURE 5. Equivalent input and output schematic diagrams.

DEFENSE SUPPLY CENTER, COLUMBUS	SIZE	CODE IDENT NO	DWG NO. V62/06629
COLUMBUS, OHIO	A	16236	
		REV B	PAGE 9

Driver voltage and current definitions

FIGURE 6. Voltage waveforms.

Driver output voltage definitions

FIGURE 8. Voltage waveforms.

DEFENSE SUPPLY CENTER, COLUMBUS	SIZE	CODE IDENT NO.	DWG NO. V62/06629	
COLUMBUS, OHIO	A	16236		
		REV B	PAGE 10	

Notes:

- 1. The input pulse is supplied by a generator having the following characteristics: PRR \leq 500 kHz, 50% duty cycle, t_r \leq 6 ns, t_f \leq 6 ns, Z₀ = 50 Ω .
- 2. C_L includes probe and jig capacitance.

Receiver voltage and current definitions

FIGURE 10. Voltage waveforms.

DEFENSE SUPPLY CENTER, COLUMBUS	SIZE	CODE IDENT NO.	DWG NO. V62/06629	
COLUMBUS, OHIO	A	16236		
		REV B	PAGE 11	

Receiver test circuit and voltage waveforms

Notes:

- 1. The input pulse is supplied by a generator having the following characteristics: PRR \leq 500 kHz, 50% duty cycle, t_r \leq 6 ns, t_f \leq 6 ns, Z₀ = 50 Ω .
- 2. C_L includes probe and jig capacitance.

FIGURE 11. Voltage waveforms.

FIGURE 12. Voltage waveforms.

DEFENSE SUPPLY CENTER, COLUMBUS	SIZE	CODE IDENT NO.		DWG NO. V62/06629	
COLUMBUS, OHIO	A	16236			
		REV	В	PAGE	12

 $t_{(\mathsf{WAKE})}$ test circuit and voltage waveforms

FIGURE 13. Voltage waveforms.

DEFENSE SUPPLY CENTER, COLUMBUS	SIZE	CODE IDENT NO.		DWG NO. V62/06629	
COLUMBUS, OHIO	A	16236			
		REV	В	PAGE	13

4. VERIFICATION

4.1 <u>Product assurance requirements</u>. The manufacturer is responsible for performing all inspection and test requirements as indicated in their internal documentation. Such procedures should include proper handling of electrostatic sensitive devices, classification, packaging, and labeling of moisture sensitive devices, as applicable.

5. PREPARATION FOR DELIVERY

5.1 <u>Packaging</u>. Preservation, packaging, labeling, and marking shall be in accordance with the manufacturer's standard commercial practices for electrostatic discharge sensitive devices.

6. NOTES

6.1 <u>ESDS</u>. Devices are electrostatic discharge sensitive and are classified as ESDS class 1 minimum.

6.2 <u>Configuration control</u>. The data contained herein is based on the salient characteristics of the device manufacturer's data book. The device manufacturer reserves the right to make changes without notice. This drawing will be modified as changes are provided.

6.3 <u>Suggested source(s) of supply</u>. Identification of the suggested source(s) of supply herein is not to be construed as a guarantee of present or continued availability as a source of supply for the item. DLA Land and Maritime maintains an online database of all current sources of supply at <u>https://landandmaritimeapps.dla.mil/programs/smcr/</u>.

Vendor item drawing administrative control number <u>1</u> /	Device manufacturer CAGE code	Vendor part number	Top side marking
V62/06629-01XE	01295	SN65HVD230MDREP	HV230M

1/ The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation.

CAGE code

01295

Source of supply

Texas Instruments, Inc. Semiconductor Group 8505 Forest lane P.O. Box 660199 Dallas, TX 75243

DEFENSE SUPPLY CENTER, COLUMBUS	SIZE	CODE IDENT NO.	DWG NO.	
COLUMBUS, OHIO	A	16236	V62/06629	
		REV B	PAGE 14	