				REVISIONS																
			L	LTR DESCRIPT				RIPTI	ION DATE			APPROVED								
				A Add JEDEC reference 51-7 und Add condition "f = 1 kHz" to bot noise voltage tests under Table case outlines X and Y under Fi Update document paragraphs requirements ro			under section 2. poth Equivalent input ble I. Add note to Figure 1. is to current			19-07-01				C. SA	FFLE					
CURREN HAS CHA DLA LAN	T DESIGN A INGED NAM D AND MA	ACTIV MES T RITIMI	ITY CAGI O: E	E CODI	E 1623	36														
Prepared	in accordan	ce wit	h ASME Y	14.24												V	endor	item c	Irawing	a
REV				1												-				9
PAGE																				
REV																				
PAGE																				
REV STA	TUS	REV		Α	A	A	A	A	A	A	A	Α	А	A	Α	А	Α	A		
OF PAGES PAG		PAG	E	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15		
PMIC N/A		PREPAR RICK C	RED BY	, R	·		·		DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990											
Original date of drawing YY-MM-DD		CHECKE TOM H	HECKED BY TOM HESS																	
06-04-27		APPRON RAYMO	/ED B) OND M(r Onnin	1				MICINOCITICOTI, LINEAR, GOAD, OF LINEARA AMPLIFIER, MONOLITHIC SILICON DWG NO. V62/06622					_						
		SIZE	COL	DE IDE	ENT. N	10.														
		Α			16	236														
			REV			Α				PAG	BE 1	OF	15							

1. SCOPE

1.1 <u>Scope</u>. This drawing documents the general requirements of a high performance quad operational amplifier microcircuit, with an operating temperature range of -55°C to +125°C.

1.2 <u>Vendor Item Drawing Administrative Control Number</u>. The manufacturer's PIN is the item of identification. The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation:

<u>V62/06622</u>	-	<u>01</u>	¥	Ę
Drawing		Device type	Case outline	Lead finish
number		(See 1.2.1)	(See 1.2.2)	(See 1

1.2.1 Device type(s).

Device type	Generic	ТА	VIO max at 25°C	Max VCC	Circuit function
01	LM2902KAV-EP	-40°C to +125°C	3 mV	32 V	Quad operational amplifier
02	LM2902KV-EP	-40°C to +125°C	7 mV	32 V	Quad operational amplifier
03	LM2902-EP	-40°C to +125°C	7 mV	26 V	Quad operational amplifier
04	LM2902KAV-EP	-55°C to +125°C	3 mV	32 V	Quad operational amplifier
05	LM2902KV-EP	-55°C to +125°C	7 mV	32 V	Quad operational amplifier
06	LM2902-EP	-55°C to +125°C	7 mV	26 V	Quad operational amplifier

1.2.2 <u>Case outline(s)</u>. The case outline(s) are as specified herein.

Outline letter	Number of pins	JEDEC PUB 95	Package style
X	14	MO-153	Plastic small outline
Y	14	MS-012-AB	Plastic small outline

1.2.3 Lead finishes. The lead finishes are as specified below or other lead finishes as provided by the device manufacture:

AHot solder dipBTin-lead plateCGold plateDPalladiumEGold flash palladiumFTin-lead alloy (BGA/CGA)ZOther	

DEFENSE SUPPLY CENTER, COLUMBUS	SIZE	CODE IDENT NO.	DWG NO. V62/06622
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 2

1.3 Absolute maximum ratings. 1/

Supply voltage range (VCC): 2/	32 V
Device types 03, 06	26 V
Differential input voltage (VID): <u>3</u> /	
Device types 01, 02, 04, 05	±32 V
Device types 03, 06	±26 V
Input voltage (either input):	
Device types 01, 02, 04, 05	-0.3 V to 32 V
Device types 03, 06	-0.3 V to 26 V
Duration of output short circuit (one amplifier) to ground at	
(or below) TA = 25°C, VCC \leq 15 V	Unlimited <u>4</u> /
Package thermal impedance (θJA):	
Case X	113°C/W <u>5</u> / <u>6</u> /
Case Y	101°C/W <u>5</u> / <u>6</u> /
Operating virtual junction temperature range (TJ)	142°C
Storage temperature range (TSTG)	-65°C to +150°C <u>7/</u>
Electrostatic discharge:	
Human body model:	> 2 kV
Charge device model	2 kV for K suffix devices
Machine model: (all pins)	>200 V

1.4 Recommended operating conditions. 8/

Operating free-air temperature range (1A)	Operating free-air temperature range (TA)		-55°C to +125°C
---	---	--	-----------------

- 2/ All voltage values, except differential voltages and VCC specified for the measurement of IOS, are with respect to the network GND.
- 3/ Differential voltages are at IN+ with respect to IN-.
- 4/ Short circuits from outputs to VCC can cause excessive heating and eventual destruction.
- 5/ Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) TA) / θJA. Operating at the absolute maximum TJ of 142°C can affect reliability.
- 6/ The package thermal impedance is calculated in accordance with JESD 51-7.
- <u>7</u>/ Long term high-temperature storage and/or extended use at maximum recommended operating conditions may result in reduction of overall device life. See manufacturer for additional information on enhanced plastic packaging.
- 8/ Use of this product beyond the manufacturers design rules or stated parameters is done at the user's risk. The manufacturer and/or distributor maintain no responsibility or liability for product used beyond the stated limits.

DEFENSE SUPPLY CENTER, COLUMBUS	SIZE	CODE IDENT NO.	DWG NO. V62/06622
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 3

<u>1</u>/ Stresses beyond those listed under "absolute maximum rating" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2. APPLICABLE DOCUMENTS

JEDEC Solid State Technology Association

JEDEC 51-7 – High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages JEDEC PUB 95 – Registered and Standard Outlines for Semiconductor Devices

(Copies of these documents are available online at https://www.jedec.org.)

3. REQUIREMENTS

3.1 <u>Marking</u>. Parts shall be permanently and legibly marked with the manufacturer's part number as shown in 6.3 herein and as follows:

- A. Manufacturer's name, CAGE code, or logo
- B. Pin 1 identifier
- C. ESDS identification (optional)

3.2 <u>Unit container</u>. The unit container shall be marked with the manufacturer's part number and with items A and C (if applicable) above.

3.3 <u>Electrical characteristics</u>. The maximum and recommended operating conditions and electrical performance characteristics are as specified in 1.3, 1.4, and table I herein.

3.4 Design, construction, and physical dimension. The design, construction, and physical dimensions are as specified herein.

3.5 Diagrams.

3.5.1 <u>Case outline</u>. The case outline shall be as shown in 1.2.2 and figure 1.

3.5.2 Terminal connections. The terminal connections shall be as shown in figure 2.

4. VERIFICATION

4.1 <u>Product assurance requirements</u>. The manufacturer is responsible for performing all inspection and test requirements as indicated in their internal documentation. Such procedures should include proper handling of electrostatic sensitive devices, classification, packaging, and labeling of moisture sensitive devices, as applicable.

DEFENSE SUPPLY CENTER, COLUMBUS	SIZE	CODE IDENT NO.	DWG NO. V62/06622
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 4

Test	Symbol	Conditions $2/$		Temperature,	Device type	Lir	nits	Unit
		unless otherwise	specified			Min	Max	
Input offset voltage	Vio	VCC = 5 V to 32 V, Non A devices		25°C	01,02, 04,05		7	mV
		VIC = VICRmin,		-55°C to +125°C			10	
		Vo = 1.4 V	A suffix devices	25°C			3	
				-55°C to +125°C			4.5	
Temperature drift ΔVIO ΔT		Rs = 0 Ω		-55°C to +125°C	01,02, 04,05	7 typical		μV/°C
Input offset current	lio	Vo = 1.4 V		25°C	01,02,		50	nA
				-55°C to +125°C	04,05		150	
Temperature drift	ΔVIO / ΔT			-55°C to +125°C	01,02, 04,05	10 typical		pA/°C
Input bias current	lів	Vo = 1.4 V		25°C	01,02,		-250	nA
				-55°C to +125°C	04,05		-500	
Common mode input voltage range	VICR	VCC = 5 V to 32 V		25°C	01,02, 04,05	0 to VCC -1.5		V
				-55°C to +125°C		0 to VCC -2		
High level output voltage	Vон	RL = 10 kΩ		25°C	01,02, 04,05	Vcc -1.5		V
		VCC = 32 V, RL = 2 k	2	-55°C to +125°C		26		
		VCC = 32 V, $RL \ge 10$ k	KΩ	-55°C to +125°C		27		
Low level output voltage	VOL	RL = 10 kΩ		-55°C to +125°C	01,02, 04,05		20	mV
Large signal differential	Avd	V_{CC} = 15 V, $R_L \ge 2 k\Omega$	2,	25°C	01,02,	25		V/mV
		Vo = 1 V to 11 V		-55°C to +125°C	04,05	15		1
Amplifier to amplifier coupling		$f = 1 \text{ kHz to } 20 \text{ kHz}, \frac{3}{2}$ input referred		25°C	01,02, 04,05	120 typical		dB

TABLE I. Electrical performance characteristics. 1/

See footnotes at end of table.

DEFENSE SUPPLY CENTER, COLUMBUS	SIZE	CODE IDENT NO.	DWG NO. V62/06622
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 5

<u>zH</u> ∖ /Vn	pical	35 ty	04'02' 01'02'	S5₀C	VCC = ±15 V, RS = 100 Ω, VI = 0 V, f = 1 kHz, see figure 4	٩٨	Equivalent input noise voltage
ZHM	lsoiqyt S. r		01,05, 04,05	S5°C	VCC = ±15 V, RL = 1 MΩ, CL = 20 pF, see figure 3	ß۱	dîbiwbnɛd niɛg ɣiinU
sıı∖∖	pical	ty 5.0	01,05, 01,05	S5°C	VCC = ±15 V, RL = 1 MΩ, CL = 30 pF, VI = ±10 V, see figure 3	ଧ୍ୟର	nisg vtinu ts ətsı wəl2
	Э			-55°C to +125°C	vo load VCC = 32 V, VO = 0.5 VCC,		
Am	2.1		04'02' 01'02	-55°C to +125°C	bsol on ,V	501	Supply current (four amplifiers)
Am	09∓		01,05, 01,05,	S5°C	VCC at 5 V, VO = 0, GND at -5 V	SOI	Short circuit output current
Aų		12		S5∘C	Vm 002 = 0V ,V 1- = UV		
		S		-55°C to +125°C			
		01		52∘C	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
		01-	90' † 0	-55°C to +125°C			
Am		-50	,20,10	25°C	VCC = 15 V, VID = 1 V, VO = 0	OI	Output current
qB	pical	(† 021	04'02'	52₀C	f = 1 kHz to 20 kHz	\rov Vo₁ /	Crosstalk attenuation
Яb		09	01,05, 04,05	S5∘C		ы∨гу	Supply voltage rejection ratio (∆VCC / ∆VIO)
Яb		09	04'02' 01'02'	S5₀C	NIC = VICRmin	смвв	Common mode rejection ratio
	хвМ	niM			unless otherwise specified		
tinU	sti	т	Device Type	Temperature, T	2^{-5} snoitibno V $\overline{C} = 5$ V	Symbol	ts∋T

TABLE I. Electrical performance characteristics – Continued. 1/

1/ Testing and other quality control techniques are used to the extent deemed necessary to assure product performance over the specified temperature range. Product may not necessarily be tested across the full temperature range and all parameters may not necessarily be tested. In the absence of specific parametric testing, product performance is assured by characterization and/or design.

Unless otherwise specified, all characteristics are measured under open loop conditions, with zero common input voltage.
 Due to proximity of external components, ensure that coupling is not originating via stray capacitance between these external <u>3</u>/

parts. Typically, this can be detected, as this type of coupling increases at higher frequencies.

PAGE 6	A VER		
A62\06625	16236	∀	COLUMBUS, OHIO
DMG NO	CODE IDENT NO.	∃ZIS	DEFENSE SUPPLY CENTER, COLUMBUS

Test Symbo		Conditions <u>2/</u> Vcc = 5 V	Temperature, TA	Device type	Limits		Unit
		unless otherwise specified			Min	Max	
Input offset voltage	Vio	VCC = 5 V to 26 V, VO = 1.4 V,	25°C	03,06		7	mV
		VIC = VICRmin,	-55°C to +125°C			10	
Input offset current	lio	Vo = 1.4 V	25°C	03,06		50	nA
			-55°C to +125°C			300	
Input bias current	lів	Vo = 1.4 V	25°C	03,06		-250	nA
			-55°C to +125°C			-500	
Common mode input voltage range	VICR	VCC = 5 V to 26 V	25°C	03,06	0 to VCC -1.5		V
			-55°C to +125°C		0 to VCC -2		
High level output voltage	Vон	RL = 10 kΩ	25°C	03,06	Vcc -1.5		V
		VCC = 26 V, RL = 2 kΩ	-55°C to +125°C		22		
		VCC = 26 V, RL \ge 10 k Ω	+25°C		23		
Low level output voltage	Vol	RL ≤ 10 kΩ	-55°C to +125°C	03,06		20	mV
Large signal differential	AVD	$VCC = 15 \text{ V}, \text{ RL} \geq 2 \text{ k}\Omega,$	25°C	03,06	100 t	ypical	V/mV
voltage amplification		Vo = 1 V to 11 V	-55°C to +125°C		15		
Common mode rejection ratio	CMRR	VIC = VICRmin	25°C	03,06	50		dB
Supply voltage rejection ratio (ΔVCC / ΔVIO)	ksvr		25°C	03,06	50		dB
Crosstalk attenuation	V01 / V02	f = 1 kHz to 20 kHz	25°C	03,06	120 t	ypical	dB

TABLE I. <u>Electrical performance characteristics</u> – Continued. $\underline{1}/$

See footnotes at end of table.

DEFENSE SUPPLY CENTER, COLUMBUS	SIZE	CODE IDENT NO.	DWG NO. V62/06622	
COLUMBUS, OHIO	A	16236		
		REV A	PAGE 7	

Test Symbol Conditions Zie Temperature, itype Device Limits Unit ity gain bandwidth 10 VCc = 15 V, VID = 1 V, VO = 0, GND at -5 V 25°C 03,06 -20 mA wreite at unity gain 10 VCc = 15 V, VID = 1 V, VO = 0, GND at -5 V 25°C 03,06 1.2 typical MI wreite at unity gain 10 VCc = 15 V, VID = -1 V, VO = 0, S5°C 03,06 1.2 typical MI wreite at unity gain 10 VCc = 15 V, VID = -1 V, VO = 0, S5°C 03,06 1.2 typical MI wreite at unity gain 10 VCc = 15 V, VID = -1 V, VO = 0, S5°C 03,06 1.2 typical MI wreite at unity gain 10 VCc = 15 V, VID = -1 V, VO = 0, S5°C 03,06 1.2 typical MI Mrent 10 VCc = 15 V, VID = -1 V, VO = 0, S5°C 03,06 1.2 typical MI Mrent 10 VCc = 15 V, VID = -1 V, VO = 0, S5°C 03,06 1.2 typical VI traiter Mrent 10 VCc = 215 V, R1 = 1 MD, S1 25°C 03,06 1.2 typical								
Test Symbol Conditions 2^{1} Temperature, implementations Device Limits Onit uput current IO VCC = 15 V, VID = 1 V, VO = 0 S6°C to +125°C 03,06 -20 mA whut current IO VCC = 15 V, VID = 1 V, VO = 0 S6°C to +125°C 03,06 -30 typical I/Le ord circuit output IO VCC = 15 V, VID = 1 V, VO = 0 S6°C to +125°C 03,06 -10 MA ord circuit output IO VCC = 15 V, VID = -1 V, VO = 0 S6°C to +125°C 03,06 1.2 MA ord circuit output IO VCC = 15 V, VID = -1 V, VO = 0.6 GND at -5 V 25°C 03,06 1.2 MA out circuit output IOS VCC = 26 V, VO = 0.6 GND at -5 V 25°C 03,06 1.2 MA out circuit output IOS VCC = 26 V, VO = 0.6 GND at -5 V 25°C 03,06 1.2 MA out circuit output IOS VCC = 26 V, VO = 0.6 GND at -5 V 25°C 03,06 1.2 MA out circuit output IOS VCC = 26 V, VO = 0.6 GND at -5 VCC, -56°C to +125°C 03,06 0.5 typical MA	<u>ZH</u> ∖ ∕Vn	1 35 typical		90'£0	S5∘C	VCC = ±15 V, RS = 100 Ω, VI = 0 V, f = 1 kHz, see figure 4	uΛ	Equivalent input noise voltage
Test Symbol Conditions $\underline{2}^{1}$ Temperature, T_{A} Device T_{A} Limits Unit Min Max tiput current IO VCC = 5 V Temperature, T_{A}	ZHM	lsoiqyt S. r		90'£0	S5∘C	CC = דעם אל אר = גו אַני) עככ = דער אר = געטי, אר = אַ אַני	B1	dłbiwbnɛd niɛg γłinU
Test Symbol Conditions $\underline{2}$ / Text Symbol Conditions $\underline{2}$ / Temperature, Device Limits Unit $V_{CC} = 5 V$, $V_{D} = 7 V$, $V_{O} = 75 V$ $V_{CC} = 5 V$, $V_{D} = 1 V$, $V_{O} = 75 V$ $V_{CC} = 75 V$, $V_{D} = 1 V$, $V_{O} = 75 V$ $V_{CC} = 75 V$, $V_{D} = -1 V$, $V_{O} = 75 V$ $V_{CC} = 75 V$, $V_{D} = -1 V$, $V_{O} = 75 V$ $V_{CC} = 75 V$, $V_{D} = -1 V$, $V_{O} = 75 V$ $V_{CC} = 75 V$, $V_{D} = -1 V$, $V_{O} = 75 V$ $V_{CC} = 75 V$, $V_{D} = -1 V$, $V_{O} = 75 V$ $V_{CC} = 75 V$, $V_{D} = -1 V$, $V_{O} = 75 V$ $V_{CC} = 75 V$, $V_{D} = -1 V$, $V_{O} = 75 V$ $V_{CC} = 75 V$, $V_{D} = -1 V$, $V_{O} = 75 V$ $V_{CC} = 75 V$, $V_{D} = -1 V$, $V_{O} = 75 V$ $V_{CC} = 75 V$, $V_{O} = 0$, $C_{D} = 15 V$ $V_{CC} = 75 V$, $V_{D} = 0$, $C_{D} = 15 V$ $V_{CC} = 75 V$, $V_{D} = 0$, $C_{D} = 15 V$ $V_{CC} = 75 V$, $V_{O} = 0$, $C_{D} = 15 V$ $V_{CC} = 75 V$, $V_{O} = 0$, $C_{D} = 15 V$ $V_{CC} = 75 V$, $V_{O} = 0$, $C_{D} = 15 V$ $V_{CC} = 75 V$, $V_{O} = 0$, $C_{D} = 15 V$ $V_{CC} = 15 V$, $V_{O} = 0$, C_{CC} $V_{CC} = 15 V$, $V_{O} = 0$, C_{CC} $V_{CC} = 15 V$, $V_{O} = 0$, C_{CC} $V_{CC} = 15 V$, $V_{O} = 0$, C_{CC} $V_{CC} = 15 V$, $V_{O} = 0$, C_{CC} $V_{CC} = 15 V$, $V_{O} = 0$, C_{CC} $V_{CC} = 15 V$, $V_{O} = 0$, C_{CC} $V_{CC} = 15 V$, $V_{O} = 0$, C_{CC} $V_{CC} = 15 V$, $V_{O} = 0$, C_{CC} $V_{CC} = 15 V$, $V_{O} = 0$, C_{CC} $V_{CC} = 15 V$, $V_{O} = 0$, C_{CC} $V_{CC} = 15 V$, $V_{O} = 0$, C_{CC} $V_{CC} = 15 V$, $V_{O} = 0$, C_{CC} $V_{CC} = 15 V$, $V_{O} = 0$, C_{CC} $V_{CC} = 15 V$, $V_{CC} = 15 V$, V_{CC}	su/V	lsəiqyt 7.0		90'£0	S5°C	CC = 30 bE, VI = ±10 V, see figure 3 VCC = ±15 V, RL = 1 MΩ,	ଧ୍ୟର	Slew rate at unity gain
Test Symbol Conditions $\underline{2}$ /, no load $-55^{\circ}C$ to $+125^{\circ}C$ $03,06$ $\underline{-20}$ mMin Max Min Max Min thut current 10 $\sqrt{CC} = 5 \text{ V}, \sqrt{D} = -1 \text{ V}, \sqrt{D} = 7 \text{ V}, \sqrt{D} = -1 \text{ V}, $		£			-55°C to +125°C	no load VCC = 26 V, VO = 0.5 VCC,		
Test Symbol Conditions $\underline{2}$ / Temperature, Device Limits Unit Nax Win Max Temperature, Device Limits Unit Nax Hype Min Max Max Min	Am	۲.2		90'80	-55°C to +125°C	bsol on ,V 8.2 = OV	ICC	Supply current (four amplifiers)
Test Symbol Conditions $\underline{2}$ / $V_{CC} = 5 V$ $V_{CC} = 5 V$, $V_{D} = -1 V$, $V_{O} = 200 \text{ mV}$ $V_{CC} = 5 V$, $V_{D} = -1 V$, $V_{O} = 15 V$ $V_{CC} = 75 V$, $V_{D} = -1 V$, $V_{O} = 15 V$ $V_{CC} = 75 V$, $V_{D} = -1 V$, $V_{O} = 15 V$ $V_{CC} = 75 V$, $V_{D} = -1 V$, $V_{O} = 75 V$ $V_{CC} = 75 V$, $V_{D} = -1 V$, $V_{O} = 75 V$ $V_{CC} = 75 V$, $V_{D} = -1 V$, $V_{O} = 75 V$ $V_{CC} = 75 V$, $V_{D} = -1 V$, $V_{O} = 75 V$ $V_{CC} = 75 V$, $V_{D} = -1 V$, $V_{O} = 75 V$ $V_{CC} = 75 V$, $V_{D} = -1 V$, $V_{O} = 75 V$ $V_{CC} = 75 V$, $V_{D} = -1 V$, $V_{O} = 75 V$ $V_{CC} = 75 V$, $V_{D} = -1 V$, $V_{O} = 75 V$ $V_{CC} = 75 V$, $V_{D} = -1 V$, $V_{O} = 75 V$ $V_{CC} = 75 V$, $V_{D} = -1 V$, $V_{O} = 75 V$ $V_{CC} = 75 V$, $V_{D} = -1 V$, $V_{O} = 75 V$ $V_{CC} = 75 V$, $V_{D} = -1 V$, $V_{O} = 75 V$ $V_{CC} = 75 V$, $V_{D} = -1 V$, $V_{O} = 75 V$ $V_{CC} = 75 V$, $V_{D} = -1 V$, $V_{O} = 75 V$ $V_{CC} = 75 V$, $V_{D} = -1 V$, $V_{O} = 70 V$ $V_{CC} = 15 V$, $V_{D} = -1 V$, $V_{O} = -1 V$, $V_{O} = 75 V$ $V_{CC} = 15 V$, $V_{D} = -1 V$, $V_{O} = 75 V$ $V_{CC} = 15 V$, $V_{D} = -1 V$, $V_{O} = 75 V$ $V_{CC} = 15 V$, $V_{D} = -1 V$, $V_{O} = 75 V$ $V_{CC} = 15 V$, $V_{D} = -1 V$, $V_{O} = 75 V$ $V_{CC} = 15 V$, $V_{D} = -1 V$, $V_{O} = 75 V$ $V_{CC} = 15 V$, $V_{D} = -1 V$, $V_{O} = 15 V$ $V_{CC} = 15 V$, $V_{D} = -1 V$, $V_{O} = 15 V$ $V_{CC} = 15 V$, $V_{D} = -1 V$, $V_{O} = 15 V$ $V_{CC} = 15 V$, $V_{D} = -1 V$, $V_{O} = 15 V$ $V_{CC} = 15 V$, $V_{D} = 10 V$ $V_{CC} = 15 V$, $V_{C} = 15 V$, $V_{D} = 10 V$ $V_{CC} = 15 V$, $V_{C} = 10 V$ $V_{C} = 10 V$, $V_{C} = 10 V$, $V_{C} = 10 V$, $V_{C} = 10 V$ $V_{C} = 10 V$, $V_{C} = $	Am	09∓		90'80	25°C	Vcc at 5 V, Vo = 0, GND at -5 V	SOI	Short circuit output current
Test Symbol Conditions $\underline{2}/$ Temperature, Device Limits Unit vbcc = 5 V Vcc = 5 V TA TA TA TA TA TA vbub vbcc = 5 V TA TA TA TA TA TA TA vbub vbc 03,06 -20 03,06 -20 mA vbut vbc 25°C to +125°C 10 10 10 10 10 vbc vbc 25°C to +125°C 25°C 10	Aų	leciq	30 fyl		25°C	Vm 002 = oV ,V 1- = dIV		
Test Symbol Conditions $\underline{2}/$ Temperature, Device Limits Unit itput current IO VCC = 15 V, VID = $1 V, VO = 0$ 25°C 03,06 -20 mA itput current IO VCC = 15 V, VID = $1 V, VO = 0$ 25°C 03,06 -20 mA			S		-55°C to +125°C			
Test Symbol Conditions <u>2</u> / Temperature, Text Device Limits Unit vbcc = 5 V Vcc = 5 V TA TA Na Min Max itput current IO Vcc = 15 V, VID = 1 V, VO = 0 25°C to +125°C 03,06 -20 mA			01		25°C	VCC = 15 V, VID = -1 V, VO = 15 V		
Test Symbol Conditions 2/ Temperature, Device Limits Unit vbcc = 5 V TA TA TA Min Max vbcc = 5 V TA TA Min Max vbcc = 5 V TA TA Min Max vbut current IO Vcc = 15 V, VID = 1 V, VO = 0 25°C 03,06 -20 mA			01-		-55°C to +125°C			
Test Symbol Conditions 2/ Temperature, Device Limits Unit Vcc = 5 V T T Min Max	Am		-50	90'20	25°C	∧CC = ↓2 ∧' ∧ID = ↓ ∧' ∧O = 0	OI	Output current
Test Symbol Conditions 2/ Temperature, Device Limits Unit Unit Texperature, Symbol Conditions 2/ T_emperature, Device Limits Unit I		хвМ	niM			pairio especificad		
	tinU	sti	miJ	Device type	Temperature, T	Senditiono $2 \le 20$	Symbol	tsəT

TABLE I. Electrical performance characteristics – Continued. 1/

1/ Testing and other quality control techniques are used to the extent deemed necessary to assure product performance over the specified temperature range. Product may not necessarily be tested across the full temperature range and all parameters may not necessarily be tested. In the absence of specific parametric testing, product performance is assured by characterization and/or design.

2/ Unless otherwise specified, all characteristics are measured under open loop conditions, with zero common input voltage.

8	PAGE	A V3	ł	
5\06625	29	16236	∀	COLUMBUS, OHIO
WG NO [.]	Na	CODE IDENT NO.	∃ZIS	DEFENSE SUPPLY CENTER, COLUMBUS

FIGURE 1. Case outlines.

DEFENSE SUPPLY CENTER, COLUMBUS	SIZE	CODE IDENT NO.	DWG NO. V62/06622	
COLUMBUS, OHIO	A	16236		
		REV A	PAGE 9	

Case X

Case X - Continued

	Dimensions						
Symbol	Incl	hes	Millir	Millimeters			
	Min	Max	Min	Max			
А		.047		1.20			
A1	.002	.006	0.05	0.15			
b	.007	.012	0.19	0.30			
с	.006 n	ominal	0.15 เ	nominal			
D	.193	.201	4.90	5.10			
E	.169	.177	4.30	4.50			
E1	.244	.260	6.20	6.60			
е		.026 BSC		0.65 BSC			
L	.020	.030	0.50	0.75			

NOTES:

- 1. All linear dimensions are in millimeters, inch dimensions are for reference only.
- 2. For dimension D, body length does not include mold flash, protrusion, or gate burrs.
- Mold flash, protrusion, or gate burrs shall not exceed 0.15 mm (0.006 inch) per side.
 3. For dimension E, body width does not include interlead flash. Interlead flash shall not exceed 0.25 mm (0.009 inch) per side.
- 4. Fall within JEDEC MO-153.

FIGURE 1. Case outlines - Continued.

DEFENSE SUPPLY CENTER, COLUMBUS	SIZE	CODE IDENT NO.	DWG NO. V62/06622	
COLUMBUS, OHIO	A	16236		
		REV A	PAGE 10	

FIGURE 1. <u>Case outlines</u> - Continued.

DEFENSE SUPPLY CENTER, COLUMBUS	SIZE	CODE IDENT NO.	DWG NO. V62/06622
COLUMBUS, OHIO	A	16236	
		REV A	PAGE 11

Case Y - Continued

	Dimensions						
Symbol	Inch	ies	Millim	neters			
	Min	Max	Min	Max			
А		.069		1.75			
A1	.004	.010	0.10	0.25			
b	.012	.020	0.31	0.51			
с	.007	.010	0.17	0.25			
D	.337	.344	8.55	8.75			
E	.150	.157	3.80	4.00			
E1	.228	.244	5.80	6.20			
е		.050 BSC		1.27 BSC			
L	.016	.050	0.40	1.27			

NOTES:

1. All linear dimensions are in inches, millimeters are for reference only.

2. For dimension D, body length does not include mold flash, protrusion, or gate burrs.

Mold flash, protrusion, or gate burrs shall not exceed 0.006 inch (0.15 mm) per end.

3. For dimension E, body width does not include interlead flash. Interlead flash shall not exceed 0.017 inch (0.43 mm) per side.

4. Fall within JEDEC MS-012-AB.

FIGURE 1. Case outlines - Continued.

DEFENSE SUPPLY CENTER, COLUMBUS	SIZE	CODE IDENT NO.	DWG NO. V62/06622	
COLUMBUS, OHIO	A	16236		
		REV A	PAGE 12	

Device types	01, 02, 03, 04, 05, 06
Case outlines	X and Y
Terminal number	Terminal symbol
1	10UT
2	1IN-
3	1IN+
4	Vcc
5	2IN+
6	2IN-
7	20UT
8	30UT
9	3IN-
10	3IN+
11	GND
12	4IN+
13	4IN-
14	40UT

FIGURE 2. Terminal connections.

DEFENSE SUPPLY CENTER, COLUMBUS	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/06622
		REV A	PAGE 13

FIGURE 3. Unity gain amplifier.

FIGURE 4. Noise test circuit.

DEFENSE SUPPLY CENTER, COLUMBUS	SIZE	CODE IDENT NO.	DWG NO. V62/06622	
COLUMBUS, OHIO	A	16236		
		REV A	PAGE 14	

5. PREPARATION FOR DELIVERY

5.1 <u>Packaging</u>. Preservation, packaging, labeling, and marking shall be in accordance with the manufacturer's standard commercial practices for electrostatic discharge sensitive devices.

6. NOTES

6.1 <u>ESDS</u>. Devices are electrostatic discharge sensitive and are classified as ESDS class 1 minimum.

6.2 <u>Configuration control</u>. The data contained herein is based on the salient characteristics of the device manufacturer's data book. The device manufacturer reserves the right to make changes without notice. This drawing will be modified as changes are provided.

6.3 <u>Suggested source(s) of supply</u>. Identification of the suggested source(s) of supply herein is not to be construed as a guarantee of present or continued availability as a source of supply for the item. DLA Land and Maritime maintains an online database of all current sources of supply at <u>https://landandmaritimeapps.dla.mil/Programs/Smcr/</u>.

Vendor item drawing administrative control number <u>1</u> /	TA	V _{IO} max at 25°C	Max VCC	Device manufacturer CAGE code	Package <u>2</u> /	Top side marking	Vendor part number
V62/06622-01XE	-40°C to +125°C	3 mV	32 V	01295	Reel of 2500	LM2902E	LM2902KAVQPWREP
V62/06622-01YE	-40°C to +125°C	3 mV	32 V	<u>3</u> /	Reel of 2500	LM2902E	LM2902KAVQDREP
V62/06622-02XE	-40°C to +125°C	7 mV	32 V	<u>3</u> /	Reel of 2000	2902KVE	LM2902KVQPWREP
V62/06622-02YE	-40°C to +125°C	7 mV	32 V	<u>3</u> /	Reel of 2500	2902KVE	LM2902KVQDREP
V62/06622-03XE	-40°C to +125°C	7 mV	26 V	<u>3</u> /	Reel of 2000	2902EP	LM2902QPWREP
V62/06622-03YE	-40°C to +125°C	7 mV	26 V	<u>3</u> /	Reel of 2500	2902EP	LM2902QDREP
V62/06622-04XE	-55°C to +125°C	3 mV	32 V	01295	Reel of 2000	2902KAE	LM2902KAVMPWREP
V62/06622-04YE	-55°C to +125°C	3 mV	32 V	<u>3</u> /	Reel of 2500	2902KAE	LM2902KAVMDREP
V62/06622-05XE	-55°C to +125°C	7 mV	32 V	<u>3</u> /	Reel of 2500	2902KME	LM2902KVMPWREP
V62/06622-05YE	-55°C to +125°C	7 mV	32 V	<u>3</u> /	Reel of 2500	2902KME	LM2902KVMDREP
V62/06622-06XE	-55°C to +125°C	7 mV	26 V	<u>3</u> /	Reel of 2500	2902ME	LM2902MPWREP
V62/06622-06YE	-55°C to +125°C	7 mV	26 V	<u>3</u> /	Reel of 2500	2902ME	LM2902MDREP

1/ The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation.

2/ Package drawings, standard packaging quantities, thermal data, symbolization, and PCB design guidelines are available from the manufacturer.

3/ Product preview. Contact vendor for device availability.

CAGE code

01295

Source of supply

Texas Instruments, Inc. Semiconductor Group 8505 Forest Ln. PO Box 660199

DEFENSE SUPPLY CENTER, COLUMBUS	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/06622
		REV A	PAGE 15