REVISIONS										
LTR	DESCRIPTION	DATE	APPROVED							
A	Add device type 02 information. Update boilerplate CFS	07-05-08	Thomas M. Hess							
В	Update boilerplate paragraphs to current requirements PHN	13-11-18	Thomas M. Hess							
С	Make change to the dimension c minimum limit as specified under Figure 1. Update document paragraphs to current requirements ro	20-08-06	James R. Eschmeyer							

CURRENT DESIGN ACTIVITY CAGE CODE 16236 HAS CHANGED NAMES TO: DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990

Prepared	in acc	ordan	ce wit	th ASN	ME Y1	4.24												Ve	endor	item d	rawing	9
REV																						
PAGE																						
REV																						
PAGE																						
REV STATUS		REV	1		С	С	С	С	С	С	С	С	С	С	С	С	С	С				
OF PAGE	S		PAG	Ε		1	2	3	4	5	6	7	8	9	10	11	12	13	14			
PMIC N/A	•	PREPARED BY Charles F. Saffle DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990																				
Original date of drawing YY-MM-DD Charles F. Saffle												ED										
05-10-19			APPROVED BY Thomas M. Hess						DIFFERENTIAL RECEIVER, MONOLITHIC SILICON													
				SIZ A	ZE A	CODE IDENT. NO. 16236				DWG	G NO.		V	/62	/05	614	4					
				REV	,	c			PAGE 1 OF 14													

1. SCOPE

1.1 <u>Scope</u>. This drawing documents the general requirements of a high performance high-speed differential receiver microcircuit, with an operating temperature range of -55°C to +125°C.

1.2 <u>Vendor Item Drawing Administrative Control Number</u>. The manufacturer's PIN is the item of identification. The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation:

<u>V62/05614</u>	-	<u>01</u>	×	Ę
Drawing		Device type	Case outline	Lead finish
number		(See 1.2.1)	(See 1.2.2)	(See 1.2.3)

1.2.1 Device type(s).

Device type	Generic	Circuit function
01	SN65LVDS33-EP	High-speed differential receiver
02	SN65LVDT33-EP	High-speed differential receiver

1.2.2 <u>Case outline(s)</u>. The case outline(s) are as specified herein.

Outline letter	Number of pins	JEDEC PUB 95	Package style
Х	16	JEDEC MS-012-AC	Plastic small-outline

1.2.3 Lead finishes. The lead finishes are as specified below or other lead finishes as provided by the device manufacture:

Finish designator	<u>Material</u>
А	Hot solder dip
В	Tin-lead plate
С	Gold plate
D	Palladium
E	Gold flash palladium
F	Tin-lead alloy (BGA/CGA)
Z	Other

DEFENSE SUPPLY CENTER, COLUMBUS	SIZE	CODE IDENT NO.	DWG NO. V62/05614
COLUMBUS, OHIO	A	16236	
		REV C	PAGE 2

1.3 Absolute maximum ratings. 1/2/

Supply voltage range (VCC)	0.5 V to +4 V
Voltage range:	
Enables or Y	1 V to +6 V
A or B	5 V to +6 V
VA – VB (Device 02 only)	1 V
Electrostatic discharge:	
A, B, and GND	Class 3, A: 15 kV, B: 500 V <u>3</u> /
Charged-device mode:	
All pins	±500 V <u>4</u> /
Continuous power dissipation:	
$TA \le 25^{\circ}C$ power rating	950 mW
TA = 85°C power rating	494 mW
TA = 125°C power rating	189 mW
Operating factor above T _A = 25°C	7.6 mW/°C <u>5</u> /
Storage temperature range (TSTG)	
Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds	+260°C
1.4 <u>Recommended operating conditions</u> .	
Supply voltage range (VCC)	+3 V to +3.6 V
High-level input voltage (Enables) (VIH)	+2 V to +5 V
Low-level input voltage (Enables) (VIL)	0 V to +0.8 V
Magnitude of differential input voltage (VID):	
Device type 01	+0.1 V to +3 V
Device type 02	0.8 V maximum
Voltage at any bus terminal (separately or common-mode) (VI or VIC)	4 V to +5 V

2/ All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.

DEFENSE SUPPLY CENTER, COLUMBUS COLUMBUS, OHIO	SIZE A	CODE I	DENT NO. 6236	DWG NO. V62/05614		
		REV	С	PAGE	3	

<u>1</u>/ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

^{3/} Tested in accordance with JEDEC Standard 22, Test Method A114 (JESD 22-A114).

^{4/} Tested in accordance with JEDEC Standard 22, Test Method C101 (JESD 22-C101).

^{5/} This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.

2. APPLICABLE DOCUMENTS

JEDEC Solid State Technology Association

JESD 22-A114	_	Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)
JESD 22-C101	_	Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand
		Thresholds of Microelectronic Components
JEDEC PUB 95	_	Registered and Standard Outlines for Semiconductor Devices

(Copies of these documents are available online at https://www.jedec.org.)

3. REQUIREMENTS

3.1 <u>Marking</u>. Parts shall be permanently and legibly marked with the manufacturer's part number as shown in 6.3 herein and as follows:

- A. Manufacturer's name, CAGE code, or logo
- B. Pin 1 identifier
- C. ESDS identification (optional)

3.2 <u>Unit container</u>. The unit container shall be marked with the manufacturer's part number and with items A and C (if applicable) above.

3.3 <u>Electrical characteristics</u>. The maximum and recommended operating conditions and electrical performance characteristics are as specified in 1.3, 1.4, and table I herein.

3.4 Design, construction, and physical dimension. The design, construction, and physical dimensions are as specified herein.

3.5 Diagrams.

3.5.1 Case outlines. The case outlines shall be as shown in 1.2.2 and figure 1.

3.5.2 Logic diagram and function table. The logic diagram and function table shall be as shown in figure 2.

3.5.3 <u>Terminal connections</u>. The terminal connections shall be as shown in figure 3.

3.5.4 <u>Switching waveforms and test circuits</u>. The switching waveforms and test circuits shall be as shown in figures 4a, 4b, 4c, 4d, 4e, and 4f.

DEFENSE SUPPLY CENTER, COLUMBUS	SIZE	CODE IDENT NO.	DWG NO. V62/05614
COLUMBUS, OHIO	A	16236	
		REV C	PAGE 4

Test	Symbol	Test conditions unless otherwise specified	Device type		Unit		
				Min	Тур	Max	
Electrical characteristics 2/		•	1	1		1	
Positive-going differential input voltage threshold	VIT1	VIB = -4 V or 5 V See figures 4a and 4b.	All			50	mV
Negative-going differential input voltage threshold	VIT2		All	-50			mV
Differential input failsafe voltage threshold	VIT3	See figures 4a and 4e.	All	-32		-100	mW
Differential input voltage hysteresis, VIT1 – VIT2	VID(HYS)		All		50		mV
High-level output voltage	Vон	Юн = -4 mA	All	2.4			V
Low-level output voltage	Vol	I _{OL} = 4 mA	All			0.4	V
Supply current	ICC	G at VCC, No load, Steady state	All		16	25	mA
		G at GND			1.1	6	
Input current	li	VI = 0 V, Other input open.	01			±25	μA
(A of B inputs)		VI = 2.4 V, Other input open.				±25	
		VI = -4 V, Other input open.				±80	
		VI = 5 V, Other input open.				±45	
		VI = 0 V, Other input open.	02			±50	
		VI = 2.4 V, Other input open.				±50	
		VI = -4 V, Other input open.]			±180	
		VI = 5 V, Other input open.				±95	
Differential input current	lio	VID = 100 mV, VIC = -4 V or 5 V	01			±5	μA
(IIA – IIB)		VID = 200 mV, VIC = -4 V or 5 V	02	1.55		2.4	mA
Power-off input current	li(OFF)	VA or VB = 0 V or 2.4 V, VCC = 0 V	01			±25	μA
(A or B inputs)		VA or VB = -4 V or 5 V, VCC = 0 V				±60	
		VA or VB = 0 V or 2.4 V, VCC = 0 V	02			±35	
		VA or VB = -4 V or 5 V, VCC = 0 V				±120	
High-level input current (Enables)	Ін	VIH = 2 V	All			12	μA
Low-level input current (Enables)	١L	VIL = 0.8 V	All			12	μA
High-impedance output current	loz		All	-10		12	μA
Input capacitance, A or B input to GND	Сі	VI = 0.4 sin (4E6πt) + 0.5 V	All		5		pF

TABLE I. Electrical performance characteristics. 1/

See footnotes at end of table.

DEFENSE SUPPLY CENTER, COLUMBUS	SIZE	CODE IDENT NO.	DWG NO. V62/05614	
COLUMBUS, OHIO	A	16236		
		REV C	PAGE 5	

Test	Symbol	Test conditions unless otherwise specified	ified Device Limits			Unit	
				Min	Тур	Max	
Switching characteristics 2/		•					
Propagation delay time, low-to-high level output	tPLH(1)	See figures 4a and 4c.	All	1.8	4	8	ns
Propagation delay time, high-to-low level output	tPHL(1)		All	1.8	4	8	ns
Delay time, failsafe deactivate time	td1	CL = 10 pF See figures 4a, 4c, and 4f.	All			11	ns
Delay time, failsafe activate time	td2		All	0.2		2	μs
Pulse skew (tPHL(1) – tPLH(1))	tsk(p)	See figures 4a and 4c.	All		200		ps
Output skew	t _{sk(o)} <u>3</u> /		All		150		ps
Part-to-part skew	t _{sk(pp)} <u>4</u> /		All			1.2	ns
Output signal rise time	tr		All		0.8		ns
Output signal fall time	tf		All		0.8		ns
Propagation delay time, high level-to-high impedance output	tphz	See figure 4d.	All		5.5	12	ns
Propagation delay time, low level-to-high impedance output	tplz		All		4.4	12	ns
Propagation delay time, high impedance-to-high level output	tрzн		All		3.8	12	ns
Propagation delay time, high impedance-to-low level output	tPZL		All		7	12	ns

TABLE I. Electrical performance characteristics - Continued. 1/

1/ Testing and other quality control techniques are used to the extent deemed necessary to assure product performance over the specified temperature range. Product may not necessarily be tested across the full temperature range and all parameters may not necessarily be tested. In the absence of specific parametric testing, product performance is assured by characterization and/or design.

2/ All typical (Typ) values are at TA = 25°C and with a 3.3-V supply. All minimum (Min) values and maximum (Max) values are over the recommended operating full temperature range of -55°C to +125°C, unless otherwise specified.

3/ tsk(o) is the magnitude of the time difference between the tPLH or tPHL of all receivers of a single device with all of their inputs driven together.

<u>4</u>/ t_{sk(pp)} is the magnitude of the time difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.

DEFENSE SUPPLY CENTER, COLUMBUS	SIZE	CODE IDENT NO.	DWG NO.	
COLUMBUS, OHIO	A	16236	V62/05614	
		REV C	PAGE 6	

	Dimensions								
Symbol	Inches		Millimeters		Symbol	Inc	hes	Milli	meters
	Min	Max	Min	Max		Min	Max	Min	Max
А		0.069		1.75	E	0.150	0.157	3.80	4.00
A1	0.004	0.010	0.10	0.25	E1	0.228	0.244	5.80	6.20
b	0.012	0.020	0.31	0.51	е	0.050 BSC		1.27	7 BSC
с	0.005	0.010	0.13	0.25	L	0.016	0.050	0.40	1.27
D	0.386	0.394	9.80	10.00					

NOTES:

1. All linear dimensions are in inches (millimeters).

2. This drawing is subject to change without notice.

- 3. For dimension D, body length does not include mold, flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 inch (0.15 mm).
- 4. For dimension E, body width does not include interlead flash. Interlead flash shall not exceed 0.017 inch (0.43 mm) each side.
- 5. Falls within JEDEC MS-012 variation AC.

FIGURE 1. Case outline.

DEFENSE SUPPLY CENTER, COLUMBUS	SIZE	CODE IDENT NO.	DWG NO. V62/05614		
COLUMBUS, OHIO	A	16236			
		REV C	PAGE 7		

Device types: 01 and 02					
Differential Input	Er	Output			
VID = VA - VB	G G		Y		
Vi⊃ > -32 mV	Н	Х	Н		
	х	L	Н		
-100 mV < Vi⊃ ≤ -32 mV	н	Х	?		
	Х	L	?		
Vip ≤ -100 mV	Н	Х	L		
	х	L	L		
Х	L	Н	Z		
Open	Н	х	Н		
	Х	L	Н		

H = high level, L = low level, X = irrelevant, Z = high impedance (off), ? = indeterminate

FIGURE 2. Logic diagram and function table.

DEFENSE SUPPLY CENTER, COLUMBUS	SIZE	CODE IDENT NO.	DWG NO.	
COLUMBUS, OHIO	A	16236	V62/05614	
		REV C	PAGE 8	

Device types:	01 and 02					
Case outline:	X					
Terminal number	Terminal symbol	Terminal number	Terminal symbol			
1	1B	9	3B			
2	1A	10	3A			
3	1Y	11	3Y			
4	G	12	lв			
5	2Y	13	4Y			
6	2A	14	4A			
7	2B	15	4B			
8	GND	16	Vcc			

FIGURE 3. Terminal connections.

VOLTAGE AND CURRENT DEFINITIONS

FIGURE 4a. Switching waveforms and test circuits.

DEFENSE SUPPLY CENTER, COLUMBUS COLUMBUS, OHIO	SIZE A	CODE	IDENT NO. 16236	DWG NO. V62/05614		
		REV	С	PAGE	9	

NOTE: REMOVE FOR TESTING LVDT DEVICE

NOTE: INPUT SIGNAL OF 3 Mpps,DURATION OF 167 ns, AND TRANSITION TIME OF < 1 ns

 \textbf{v}_{IT1} and \textbf{v}_{IT2} input voltage threshold test circuit and definitions

FIGURE 4b. Switching waveforms and test circuits.

DEFENSE SUPPLY CENTER, COLUMBUS	SIZE	CODE IDENT NO.	DWG NO. V62/05614	
COLUMBUS, OHIO	A	16236		
		REV C	PAGE 10	

NOTE: All input pulses are supplied by a generator having the following characteristics: tr or tf ≤ 1 ns, pulse repetition rate (PRR) = 50 Mpps, pulsewidth = 10 ±0.2 ns. CL includes instrumentation and fixture capacitance within 0.06 mm of the device under test (DUT).

FIGURE 4c.	Switching	waveforms	and	test	circuits.

DEFENSE SUPPLY CENTER, COLUMBUS	SIZE	CODE IDENT NO.	DWG NO. V62/05614	
COLUMBUS, OHIO	A	16236		
		REV C	PAGE 11	

NOTE: All input pulses are supplied by a generator having the following characteristics: tr or tf \leq 1 ns, pulse repetition rate (PRR) = 0.5 Mpps, pulsewidth = 500 ±10 ns. CL includes instrumentation and fixture capacitance within 0.06 mm of the D.U.T.

ENABLE/DISABLE TIME TEST CIRCUIT AND WAVEFORMS

FIGURE 4d. Switching waveforms and test circuits.

DEFENSE SUPPLY CENTER, COLUMBUS	SIZE	CODE IDENT NO.	DWG NO. V62/05614	
COLUMBUS, OHIO	A	16236		
		REV C	PAGE 12	

 v_{IT3} failsafe threshold test

FIGURE 4e. Switching waveforms and test circuits.

WAVEFORMS FOR FAILSAFE ACTIVATE AND DEACTIVATE

FIGURE 4f	Switching	waveforms	and	test	circuits
1100112 11.	Ownorming	wavoioiiiio	and	1001	on ouno.

DEFENSE SUPPLY CENTER, COLUMBUS	SIZE	CODE IDENT NO.	DWG NO. V62/05614	
COLUMBUS, OHIO	A	16236		
		REV C	PAGE 13	

4. VERIFICATION

4.1 <u>Product assurance requirements</u>. The manufacturer is responsible for performing all inspection and test requirements as indicated in their internal documentation. Such procedures should include proper handling of electrostatic sensitive devices, classification, packaging, and labeling of moisture sensitive devices, as applicable.

5. PREPARATION FOR DELIVERY

5.1 <u>Packaging</u>. Preservation, packaging, labeling, and marking shall be in accordance with the manufacturer's standard commercial practices for electrostatic discharge sensitive devices.

6. NOTES

6.1 <u>ESDS</u>. Devices are electrostatic discharge sensitive and are classified as ESDS class 1 minimum.

6.2 <u>Configuration control</u>. The data contained herein is based on the salient characteristics of the device manufacturer's data book. The device manufacturer reserves the right to make changes without notice. This drawing will be modified as changes are provided.

6.3 <u>Suggested source(s) of supply</u>. Identification of the suggested source(s) of supply herein is not to be construed as a guarantee of present or continued availability as a source of supply for the item. DLA Land and Maritime maintains an online database of all current sources of supply at <u>https://landandmaritimeapps.dla.mil/Programs/Smcr/</u>.

Vendor item drawing administrative control number <u>1</u> /	Device manufacturer CAGE code	Top side marking	Vendor part number
V62/05614-01XE	01295	LVDS33M	SN65LVDS33MDREP
V62/05614-02XE	<u>2</u> /	LVDT33M	SN65LVDT33MDREP

1/ The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation.

2/ Not available from an approved source of supply.

CAGE code

01295

Source of supply

Texas Instruments, Inc. Semiconductor Group 8505 Forest lane P.O. Box 660199 Dallas, TX 75243

DEFENSE SUPPLY CENTER, COLUMBUS	SIZE	CODE IDENT NO.	DWG NO. V62/05614	
COLUMBUS, OHIO	A	16236		
		REV C	PAGE 14	