<table>
<thead>
<tr>
<th>LTR</th>
<th>DESCRIPTION</th>
<th>DATE (YR-MO-DA)</th>
<th>APPROVED</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Add device types 04 through 06. Add VOTLINE and TTLINE test parameters. Delete output power test, parameter is guaranteed by line and load regulation tests. Add note 9/ on sheet 7, delete note 3/, and renumber notes. Update terminal connections figure 2 to include device types 04, 05, and 06. Redrew entire document.</td>
<td>94-02-04</td>
<td>K. A. Cottongim</td>
</tr>
<tr>
<td>B</td>
<td>Update drawing boilerplate. Editorial changes throughout.</td>
<td>03-06-12</td>
<td>Raymond Monnin</td>
</tr>
<tr>
<td>C</td>
<td>Update drawing. -gz</td>
<td>08-06-12</td>
<td>Robert M. Heber</td>
</tr>
<tr>
<td>D</td>
<td>Table II, add note to Group C end-point test parameters. Update boilerplate paragraphs. -gz</td>
<td>11-03-09</td>
<td>Robert M. Heber</td>
</tr>
<tr>
<td>E</td>
<td>Updated drawing to the latest requirements of MIL-PRF-38534. -sld</td>
<td>17-03-13</td>
<td>Charles F. Saffle</td>
</tr>
</tbody>
</table>

THE ORIGINAL FIRST SHEET OF THIS DRAWING HAS BEEN REPLACED.
1. SCOPE

1.1 Scope. This drawing documents five product assurance classes as defined in paragraph 1.2.3 and MIL-PRF-38534. A choice of case outlines and lead finishes which are available and are reflected in the Part or Identifying Number (PIN). When available, a choice of radiation hardness assurance levels are reflected in the PIN.

1.2 PIN. The PIN is as shown in the following example:

<table>
<thead>
<tr>
<th>Federal stock class designator</th>
<th>RHA designator (see 1.2.1)</th>
<th>Device type (see 1.2.2)</th>
<th>Device class designator (see 1.2.4)</th>
<th>Case outline (see 1.2.4)</th>
<th>Lead finish (see 1.2.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5962</td>
<td>01</td>
<td>H</td>
<td>Z</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

Drawing number

1.2.1 Radiation hardness assurance (RHA) designator. RHA marked devices meet the MIL-PRF-38534 specified RHA levels and are marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device.

1.2.2 Device types. The device types identify the circuit function as follows:

<table>
<thead>
<tr>
<th>Device type</th>
<th>Generic number</th>
<th>Circuit function</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>7870-01</td>
<td>DC/DC converter, 30 W, 5 V output</td>
</tr>
<tr>
<td>02</td>
<td>7870-02</td>
<td>DC/DC converter, 30 W, 5 V output</td>
</tr>
<tr>
<td>03</td>
<td>7870-03</td>
<td>DC/DC converter, 30 W, 5 V output</td>
</tr>
<tr>
<td>04</td>
<td>ATW2805S/CH</td>
<td>DC/DC converter, 30 W, 5 V output</td>
</tr>
<tr>
<td>05</td>
<td>ATW2805S/CH - SLAVE</td>
<td>DC/DC converter, 30 W, 5 V output</td>
</tr>
<tr>
<td>06</td>
<td>ATW2805S/CH - MASTER</td>
<td>DC/DC converter, 30 W, 5 V output</td>
</tr>
</tbody>
</table>

1.2.3 Device class designator. This device class designator is a single letter identifying the product assurance level. All levels are defined by the requirements of MIL-PRF-38534 and require QML Certification as well as qualification (Class H, K, and E) or QML Listing (Class G and D). The product assurance levels are as follows:

<table>
<thead>
<tr>
<th>Device class</th>
<th>Device performance documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>Highest reliability class available. This level is intended for use in space applications.</td>
</tr>
<tr>
<td>H</td>
<td>Standard military quality class level. This level is intended for use in applications where non-space high reliability devices are required.</td>
</tr>
<tr>
<td>G</td>
<td>Reduced testing version of the standard military quality class. This level uses the Class H screening and In-Process Inspections with a possible limited temperature range, manufacturer specified incoming flow, and the manufacturer guarantees (but may not test) periodic and conformance inspections (Group A, B, C, and D).</td>
</tr>
<tr>
<td>E</td>
<td>Designates devices which are based upon one of the other classes (K, H, or G) with exception(s) taken to the requirements of that class. These exception(s) must be specified in the device acquisition document; therefore the acquisition document should be reviewed to ensure that the exception(s) taken will not adversely affect system performance.</td>
</tr>
<tr>
<td>D</td>
<td>Manufacturer specified quality class. Quality level is defined by the manufacturers internal, QML certified flow. This product may have a limited temperature range.</td>
</tr>
</tbody>
</table>
1.2.4 Case outline. The case outline is as designated in MIL-STD-1835 and as follows:

<table>
<thead>
<tr>
<th>Outline letter</th>
<th>Descriptive designator</th>
<th>Terminals</th>
<th>Package style</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>See figure 1</td>
<td>10</td>
<td>Flange mount</td>
</tr>
</tbody>
</table>

1.2.5 Lead finish. The lead finish is as specified in MIL-PRF-38534.

1.3 Absolute maximum ratings. 1/

- Input voltage range: -0.5 V dc to +50 V dc
- Power dissipation (Pd): 12 W
- Lead temperature (soldering, 10 seconds): +300°C
- Storage temperature range: -65°C to +150°C

1.4 Recommended operating conditions.

- Input voltage range: +19 V dc to +40 V dc
- Output power: ≤ 30 W
- Case operating temperature range (Tc): -55°C to +125°C

2. APPLICABLE DOCUMENTS

2.1 Government specification, standards, and handbooks. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

- DEPARTMENT OF DEFENSE SPECIFICATION

- DEPARTMENT OF DEFENSE STANDARDS

- DEPARTMENT OF DEFENSE HANDBOOKS
 - MIL-HDBK-103 - List of Standard Microcircuit Drawings.
 - MIL-HDBK-780 - Standard Microcircuit Drawings.

(Copies of these documents are available online at http://quicksearch.dla.mil or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.2 Order of precedence. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

3.1 Item requirements. The individual item performance requirements for device classes D, E, G, H, and K shall be in accordance with MIL-PRF-38534. Compliance with MIL-PRF-38534 shall include the performance of all tests herein or as designated in the device manufacturer's Quality Management (QM) plan or as designated for the applicable device class. The manufacturer may eliminate, modify or optimize the tests and inspections herein, however the performance requirements as defined in MIL-PRF-38534 shall be met for the applicable device class. In addition, the modification in the QM plan shall not affect the form, fit, or function of the device for the applicable device class.

1/ Stresses above the absolute maximum ratings may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.
2/ Derate output power linearly above case temperature +125°C to 0 at +135°C.
3.2 Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38534 and herein.

3.2.1 Case outline. The case outline shall be in accordance with 1.2.4 herein and figure 1.

3.2.2 Terminal connections. The terminal connections shall be as specified on figure 2.

3.2.3 Block diagram. The block diagram shall be as specified on figure 3.

3.3 Electrical performance characteristics. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full specified operating temperature range.

3.4 Electrical test requirements. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are defined in table I.

3.5 Marking of devices. Marking of devices shall be in accordance with MIL-PRF-38534. The device shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's vendor similar PIN may also be marked.

3.6 Data. In addition to the general performance requirements of MIL-PRF-38534, the manufacturer of the device described herein shall maintain the electrical test data (variables format) from the initial quality conformance inspection group A lot sample, for each device type listed herein. Also, the data should include a summary of all parameters manually tested, and for those which, if any, are guaranteed. This data shall be maintained under document revision level control by the manufacturer and be made available to the preparing activity (DLA Land and Maritime-VA) upon request.

3.7 Certificate of compliance. A certificate of compliance shall be required from a manufacturer in order to supply to this drawing. The certificate of compliance (original copy) submitted to DLA Land and Maritime-VA shall affirm that the manufacturer's product meets the performance requirements of MIL-PRF-38534 and herein.

3.8 Certificate of conformance. A certificate of conformance as required in MIL-PRF-38534 shall be provided with each lot of microcircuits delivered to this drawing.

4. VERIFICATION

4.1 Sampling and inspection. Sampling and inspection procedures shall be in accordance with MIL-PRF-38534 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.

4.2 Screening. Screening shall be in accordance with MIL-PRF-38534. The following additional criteria shall apply:

 (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to either DLA Land and Maritime-VA or the acquiring activity upon request. Also, the test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 of MIL-STD-883.
 (2) T_C as specified in accordance with table I of method 1015 of MIL-STD-883.

b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.

<table>
<thead>
<tr>
<th>STANDARD MICROCIRCUIT DRAWING</th>
<th>SIZE</th>
<th>5962-91579</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLA LAND AND MARITIME</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>COLUMBUS, OHIO 43218-3990</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REVISION LEVEL E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHEET 4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE I. Electrical performance characteristics.

<table>
<thead>
<tr>
<th>Test</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Group A subgroup types</th>
<th>Device types</th>
<th>Limits</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage</td>
<td>V<sub>OUT</sub></td>
<td>I<sub>OUT</sub> = 0
-55°C ≤ T<sub>C</sub> ≤ +125°C
V<sub>IN</sub> = 28 V dc ±5%, C<sub>L</sub> = 0 unless otherwise specified</td>
<td>1, 2, 3</td>
<td>All</td>
<td>4.95</td>
<td>5.05</td>
</tr>
<tr>
<td>Output current 1/</td>
<td>I<sub>OUT</sub></td>
<td>V<sub>IN</sub> = 19, 28, and 40 V dc</td>
<td>1, 2, 3</td>
<td>All</td>
<td>6000</td>
<td>mA</td>
</tr>
<tr>
<td>Output ripple voltage 2/</td>
<td>V<sub>RIP</sub></td>
<td>V<sub>IN</sub> = 19, 28, and 40 V dc, B.W. = 20 Hz to 2 MHz</td>
<td>1, 2, 3</td>
<td>All</td>
<td>50</td>
<td>mV p-p</td>
</tr>
<tr>
<td>Line regulation 3/</td>
<td>V<sub>RLINE</sub></td>
<td>V<sub>IN</sub> = 19, 28, and 40 V dc, I<sub>OUT</sub> = 0, 3000, and 6000 mA</td>
<td>1</td>
<td>All</td>
<td>5</td>
<td>mV</td>
</tr>
<tr>
<td>Load regulation 3/</td>
<td>V<sub>RLoad</sub></td>
<td>V<sub>IN</sub> = 19, 28, and 40 V dc, I<sub>OUT</sub> = 0, 3000, and 6000 mA</td>
<td>1, 2, 3</td>
<td>All</td>
<td>30</td>
<td>mV</td>
</tr>
<tr>
<td>Input current</td>
<td>I<sub>IN</sub></td>
<td>I<sub>OUT</sub> = 0 inhibit (pin 2) tied to input return (pin 10)</td>
<td>1, 2, 3</td>
<td>All</td>
<td>18</td>
<td>mA</td>
</tr>
<tr>
<td>Input ripple current 2/</td>
<td>I<sub>RIP</sub></td>
<td>I<sub>OUT</sub> = 6000 mA, B.W. = 20 Hz to 2 MHz</td>
<td>1, 2, 3</td>
<td>All</td>
<td>20</td>
<td>mA p-p</td>
</tr>
<tr>
<td>Efficiency</td>
<td>E<sub>Eff</sub></td>
<td>I<sub>OUT</sub> = 6000 mA</td>
<td>1</td>
<td>All</td>
<td>78</td>
<td>%</td>
</tr>
<tr>
<td>Isolation</td>
<td>ISO</td>
<td>Input to output or any pin to case (except pin 7) at 500 V dc, T<sub>C</sub> = +25°C</td>
<td>1</td>
<td>All</td>
<td>100</td>
<td>MΩ</td>
</tr>
<tr>
<td>Capacitive load 4/ 5/</td>
<td>C<sub>L</sub></td>
<td>No effect on dc performance, T<sub>C</sub> = +25°C</td>
<td>4</td>
<td>All</td>
<td>500</td>
<td>µF</td>
</tr>
<tr>
<td>Power dissipation load fault</td>
<td>P<sub>D</sub></td>
<td>Overload, T<sub>C</sub> = +25°C</td>
<td>1</td>
<td>All</td>
<td>12</td>
<td>W</td>
</tr>
<tr>
<td>Switching frequency</td>
<td>f<sub>S</sub></td>
<td>I<sub>OUT</sub> = 6000 mA</td>
<td>4, 5, 6</td>
<td>01, 04</td>
<td>250</td>
<td>300</td>
</tr>
<tr>
<td>Output response to step transient load changes 7/</td>
<td>(V_{OUT \text{LOAD}})</td>
<td>4000 mA to/from 6000 mA
500 mA to/from 2500 mA</td>
<td>4, 5, 6</td>
<td>All</td>
<td>-500</td>
<td>+500</td>
</tr>
</tbody>
</table>

See footnotes at end of table.
TABLE I. Electrical performance characteristics - Continued.

<table>
<thead>
<tr>
<th>Test</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Group A subgroups</th>
<th>Device types</th>
<th>Limits</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recovery time, step transient load changes 7/ 8/</td>
<td>TTLOAD</td>
<td>4000 mA to/from 6000 mA</td>
<td>4, 5, 6</td>
<td>All</td>
<td>100</td>
<td>µs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>500 mA to/from 2500 mA</td>
<td>4, 5, 6</td>
<td>All</td>
<td>100</td>
<td>µs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Output response to transient step line changes 5/ 9/</td>
<td>VOTLINE</td>
<td>Input step 19 V to/from 40 V dc, I\text{OUT} = 6000 mA</td>
<td>4, 5, 6</td>
<td>04, 05, 06</td>
<td>-500</td>
<td>mV pk</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+300</td>
<td></td>
</tr>
<tr>
<td>Recovery time transient step line changes 5/ 8/ 9/</td>
<td>TTLINE</td>
<td>Input step 19 V to/from 40 V dc, I\text{OUT} = 6000 mA</td>
<td>4, 5, 6</td>
<td>04, 05, 06</td>
<td>500</td>
<td>µs</td>
</tr>
<tr>
<td>Turn on overshoot</td>
<td>VTONOS</td>
<td>I\text{OUT} = 0 and 6000 mA</td>
<td>4, 5, 6</td>
<td>All</td>
<td>500</td>
<td>mV pk</td>
</tr>
<tr>
<td>Turn on delay</td>
<td>TOND</td>
<td>I\text{OUT} = 0 and 6000 mA</td>
<td>4, 5, 6</td>
<td>All</td>
<td>12</td>
<td>ms</td>
</tr>
<tr>
<td>Load fault recovery</td>
<td>TRLF</td>
<td></td>
<td>4, 5, 6</td>
<td>All</td>
<td>12</td>
<td>ms</td>
</tr>
</tbody>
</table>

1/ Parameter guaranteed by line and load regulation tests.
2/ Bandwidth guaranteed by design. Test for 20 kHz to 2 MHz.
3/ Output voltage measured at load with remote sense leads connected across load.
4/ Capacitive load may be any value from 0 to the maximum limit without compromising dc performance. A capacitive load in excess of the maximum limit will not disturb loop stability but may interfere with the operation of the load fault detection circuitry, appearing as a short circuit during turn-on.
5/ Parameter shall be tested as part of design characterization and after design or process changes. Thereafter, parameters shall be guaranteed to the limits specified in table I.
6/ An overload is that condition with a load in excess of the rated load but less than that necessary to trigger the short circuit protection and is the condition of maximum power dissipation.
7/ Load step transition time between 2 and 10 microseconds.
8/ Recovery time is measured from the initiation of the transient to where V\text{OUT} has returned to within ±1 percent of V\text{OUT} at 50 percent load.
9/ Input step transition time between 2 and 10 microseconds.
10/ Turn on delay time measurement is for either a step application of power at the input or the removal of a ground signal from the inhibit pin (pin 2) while power is applied to the input.
NOTES:
1. The U. S. Government preferred system of measurement is the metric SI. This case outline was designed using inch-pound units of measurement. In case of problems involving conflicts between the metric and inch-pound units, the inch-pound units shall take rule.
2. Case outline Z weight: 75 grams maximum.

FIGURE 1. Case outline.
<table>
<thead>
<tr>
<th>Device types</th>
<th>01 and 04</th>
<th>02, 03, 05, and 06</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case outline</td>
<td>Z</td>
<td>Z</td>
</tr>
<tr>
<td>Terminal number</td>
<td>Terminal symbol</td>
<td>Terminal symbol</td>
</tr>
<tr>
<td>1</td>
<td>Input</td>
<td>Input</td>
</tr>
<tr>
<td>2</td>
<td>Inhibit in</td>
<td>Inhibit in</td>
</tr>
<tr>
<td>3</td>
<td>Negative remote sense</td>
<td>Negative remote sense</td>
</tr>
<tr>
<td>4</td>
<td>Output return</td>
<td>Output return</td>
</tr>
<tr>
<td>5</td>
<td>Positive output</td>
<td>Positive output</td>
</tr>
<tr>
<td>6</td>
<td>Positive remote sense</td>
<td>Positive remote sense</td>
</tr>
<tr>
<td>7</td>
<td>Case ground</td>
<td>Case ground</td>
</tr>
<tr>
<td>8</td>
<td>No connection</td>
<td>Synchronization</td>
</tr>
<tr>
<td>9</td>
<td>No connection</td>
<td>No connection</td>
</tr>
<tr>
<td>10</td>
<td>Input return</td>
<td>Input return</td>
</tr>
</tbody>
</table>

FIGURE 2. Terminal connections.

FIGURE 3. Block diagram.
TABLE II. Electrical test requirements.

<table>
<thead>
<tr>
<th>MIL-PRF-38534 test requirements</th>
<th>Subgroups (in accordance with MIL-PRF-38534, group A test table)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interim electrical parameters</td>
<td>---</td>
</tr>
<tr>
<td>Final electrical parameters</td>
<td>1*, 2, 3, 4, 5, 6</td>
</tr>
<tr>
<td>Group A test requirements</td>
<td>1, 2, 3, 4, 5, 6</td>
</tr>
<tr>
<td>Group C end-point electrical parameters 1/</td>
<td>1, 2, 3, 4</td>
</tr>
<tr>
<td>End-point electrical parameters for radiation hardness assurance (RHA) devices</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

* PDA applies to subgroup 1.
1/ As a minimum, for all Group C testing performed after 9 March 2011 manufacturers shall perform subgroups 1, 2, and 3 from the Group A electrical test table (Table C-Xa of MIL-PRF-38534).

4.3 Conformance and periodic inspections. Conformance inspection (CI) and periodic inspection (PI) shall be in accordance with MIL-PRF-38534 and as specified herein.

4.3.1 **Group A inspection (CI).** Group A inspection shall be in accordance with MIL-PRF-38534 and as follows:

a. Tests shall be as specified in table II herein.

b. Subgroups 7, 8, 9, 10, and 11 shall be omitted.

4.3.2 **Group B inspection (PI).** Group B inspection shall be in accordance with MIL-PRF-38534.

4.3.3 **Group C inspection (PI).** Group C inspection shall be in accordance with MIL-PRF-38534 and as follows:

a. End-point electrical parameters shall be as specified in table II herein.

 1. Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to either DLA Land and Maritime-VA or the acquiring activity upon request. Also, the test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883.

 2. Tc as specified in accordance with table I of method 1005 of MIL-STD-883.

 3. Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

4.3.4 **Group D inspection (PI).** Group D inspection shall be in accordance with MIL-PRF-38534.

4.3.5 **Radiation Hardness Assurance (RHA) inspection.** RHA inspection is not currently applicable to this drawing.
5. PACKAGING

5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-PRF-38534.

6. NOTES

6.1 Intended use. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.

6.2 Replaceability. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.

6.3 Configuration control of SMD's. All proposed changes to existing SMD's will be coordinated as specified in MIL-PRF-38534.

6.4 Record of users. Military and industrial users should inform DLA Land and Maritime when a system application requires configuration control and the applicable SMD. DLA Land and Maritime will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DLA Land and Maritime-VA, telephone (614) 692-8108.

6.5 Comments. Comments on this drawing should be directed to DLA Land and Maritime-VA, Post Office Box 3990, Columbus, Ohio 43218-3990, or telephone (614) 692-1081.

6.6 Sources of supply. Sources of supply are listed in MIL-HDBK-103 and QML-38534. The vendors listed in MIL-HDBK-103 and QML-38534 have submitted a certificate of compliance (see 3.7 herein) to DLA Land and Maritime-VA and have agreed to this drawing.
Approved sources of supply for SMD 5962-91579 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38534 during the next revisions. MIL-HDBK-103 and QML-38534 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DLA Land and Maritime-VA. This information bulletin is superseded by the next dated revisions of MIL-HDBK-103 and QML-38534. DLA Land and Maritime maintains an online database of all current sources of supply at https://landandmaritimeapps.dla.mil/programs/smcrr.

<table>
<thead>
<tr>
<th>Standard microcircuit drawing PIN 1/</th>
<th>Vendor CAGE number</th>
<th>Vendor similar PIN 2/</th>
</tr>
</thead>
<tbody>
<tr>
<td>5962-9157901HZA</td>
<td>52467</td>
<td>7870-01</td>
</tr>
<tr>
<td>5962-9157902HZA</td>
<td>52467</td>
<td>7870-02</td>
</tr>
<tr>
<td>5962-9157903HZA</td>
<td>52467</td>
<td>7870-03</td>
</tr>
<tr>
<td>5962-9156704HZA</td>
<td>52467</td>
<td>ATW2805S/CH</td>
</tr>
<tr>
<td>5962-9157905HZA</td>
<td>52467</td>
<td>ATW2805S/CH-SLV</td>
</tr>
<tr>
<td>5962-9157906HZA</td>
<td>52467</td>
<td>ATW2805S/CH-MSTR</td>
</tr>
</tbody>
</table>

1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the Vendor to determine its availability.

2/ Caution. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

<table>
<thead>
<tr>
<th>Vendor CAGE number</th>
<th>Vendor name and address</th>
</tr>
</thead>
</table>
| 52467 | International Rectifier Corporation
| | 2520 Junction Avenue
| | San Jose, CA 95134 |

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.