	REVISIONS																			
LTR					D	ESCR	IPTIO	N					DA	TE (YF	R-MO-	DA)		APPR	OVED)
A	Add Upda limit	class ate sh in tabl	V leve ort cire le IA	el devic cuit ou – MAA	ce type tput(lo 	es 01-(_{SH2}) lir)3. Ad nit, pro	d delta opagat	i burn- tion de	-in table IIB. elay time(tp∟нтз) 16-10-06			Thomas M. Hess							
REV																				5. 46 . 44
SHEET																				
REV	А	А	Α	А	Α	А	Α	Α	Α	Α	А	Α	Α	Α	Α	Α	A	Α		
SHEET	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32		
REV STATUS	6			RE	V		Α	Α	Α	Α	А	Α	Α	Α	Α	А	Α	Α	Α	А
OF SHEETS				SH	EET		1	2	3	4	5	6	7	8	9	10	11	12	13	14
PMIC N/A				PRE	PARE	DBY														
STAN MICRO DRA	NDAI CIR(WIN	RD CUIT IG		CHE	ECKED Muhar	BY DBY	Akbar			DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 http://www.landandmaritime.dla.mil										
THIS DRAWING IS AVAILABLE FOR USE BY AII DEPARTMENTS AND AGENCIES OF THE DEPARTMENT OF DEFENSE			APP T DRA	PPROVED BY Thomas M. Hess RAWING APPROVAL DATE 16-02-22				MICROCIRCUIT, DIGITAL, RADIATION HARDENED, CMOS, CONTROLLER AREA NETWORK (CAN) FD TRANSCEIVER, MONOLITHIC SILICON				N-								
AM	SC N/A			REV	ISION	I LEVE	EL A			SI	ZE	CA	GE CC 6726	DDE B Sheet	Г_1	59 OF 3	62-	152	232	

1. SCOPE

1.1 <u>Scope</u>. This drawing documents two product assurance class levels consisting of high reliability (device class Q) and space application (device class V). A choice of case outlines and lead finishes are available and are reflected in the Part or Identifying Number (PIN). When available, a choice of Radiation Hardness Assurance (RHA) levels is reflected in the PIN.

1.2 <u>PIN</u>. The PIN shall be as shown in the following example:

1.3 Absolute maximum ratings. 1/

	STANDARD	SIZE		
<u>7</u> /	SEL is performed at $V_{DD} = 3.6V$ at $125^{\circ}C$			
<u> </u>	Per MIL-STD-883, Method 1019, Condition A			
<u>+</u> / 5/	Per MIL-STD-883, Method 3015. Table 3			
4/	Per MII -STD-883, Method 1012 1 Section 3.4.1 Pp=(Tu(max	$()-T_{C}(\max))/A_{C}$		
<u>3</u> /	Radiation effects can adversely affect the reliability and perfor	rmance of the de	vice during this condition. C	contact a factory
<u>2</u> /	All voltage values in this drawing are with respect to Vss.		alian destinan det i 1991 🔿	
<i></i>	reliability and performance.			
	specification are not recommended. Exposure to absolute ma	aximum rating cor	nditions for extended period	ls may affect device
<u> </u>	and functional operation of the device at these or any other co	onditions beyond	limits indicated in the operation	ational sections of this
1/	Stresses outside the listed absolute maximum ratings may ca	use permanent d	amage to the device. This i	is a stress rating only
	- , - , , , , , , , , , , , , , , , , - , , -		- (3)	-
	No SEL occurs at effective LET, (see 4.4.4.3)		≤ 117 MeV/(mg/cm ²)	<u>7</u> /
	Single event phenomenon (SEP)			
	Maximum total dose available (dose rate = 50 - 300 rads ((Si)/s)	100K Rad(Si) <u>6</u> /	
	<u></u>			
1	5 Radiation features			
	Case operating temperature range, (T _c)		55°C to +125°C	
	Bias input to RS pin for high speed (8 Mbps)		Vss to 0.3 V	
	Bias input to RS pin for slope control		$10 \text{ k}\Omega \text{ to } +100 \text{ k}\Omega$	
	Bias input to RS pin, (KSBIAS) Bias input to RS pin for standby		 0 75*\/pp to \/pp	
	Differential input voltage, (V _{ID})		6 Vdc to +6 Vdc	
	Voltage on TTL, (V_{VO}) .		0 Vdc to +5.5 Vdc	
	Supply voltage, (Vss)		0 Vdc	
	VCANL		-7.0 V dc to +12 V	dc
	Vcanh		-7.0 V dc to +12 V	dc
	Operating supply voltage range. (Von)		+3.0 V dc to +3.6 V	′ dc
1	.4 Recommended operating conditions.			
	ESD Protection (TXD, RXD, RS, ZZ, AB), ESDHBM		2000 V <u>5</u> /	
	ESD Protection (CANH, CANL), ESD _{HBM}		4000 V <u>5</u> /	
	Thermal resistance, junction-to-case, (θ _{Jc}): Case X		15ºC/W	
	Junction temperature, (T _J)		+150°C	
	Storage temperature range, (TC)		-65°C to +165°C	
	Γ ussipation, Γ \square \square Γ \square		-55°C to ±125°C	
	Power dissipation $P_{D} @ T_{0} = 125^{\circ}C$	ior zo years		
	Voltage on CANH and CANL bus terminal pin ([errestric	al)	36 V dc to +36 V d	ic <u>3</u> /
	Voltage on CANH and CANL bus terminal pin (On-orbit))	16 V dc to +16 V d	lc <u>3</u> /
	Vcanh/L			-
	Voltage on any pin, (V _{IN})		-0.3 V dc to 5.5 V d	lc 2/
	Supply voltage range. (VDD)		-0.3 V dc to +6.0 V	dc 2/

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-15232
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		A	3

2. APPLICABLE DOCUMENTS

2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATION

MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-883 - Test Method Standard Microcircuits.

MIL-STD-1835 - Interface Standard Electronic Component Case Outlines.

DEPARTMENT OF DEFENSE HANDBOOKS

MIL-HDBK-103 - List of Standard Microcircuit Drawings.

MIL-HDBK-780 - Standard Microcircuit Drawings.

(Copies of these documents are available online at <u>http://quicksearch.dla.mil/</u> or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.2 <u>Non-Government publications</u>. The following document(s) form a part of this document to the extent specified herein. Unless otherwise specified, the issues of the documents are the issues of the documents cited in the solicitation.

ASTM INTERNATIONAL (ASTM)

ASTM Standard F1192 - Standard Guide for the Measurement of Single Event Phenomena (SEP) Induced by Heavy Ion Irradiation of Semiconductor Devices.

(Applications for copies of ASTM publications should be addressed to: ASTM International, PO Box C700, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959; <u>http://www.astm.org</u>.)

JEDEC INTERNATIONAL (JEDEC)

JESD 78 - IC Latch-Up Test.

(Applications for copies should be addressed to the Electronics Industries Association, 2500 Wilson Boulevard, Arlington, VA 22201; <u>http://www.jedec.org</u>.)

(Non-Government standards and other publications are normally available from the organizations that prepare or distribute the documents. These documents also may be available in or through libraries or other informational services.)

2.3 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-15232
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL A	SHEET 4

3. REQUIREMENTS

3.1 <u>Item requirements</u>. The individual item requirements for device classes Q and V shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.

3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein for device classes Q and V.

3.2.1 Case outline(s). The case outline(s) shall be in accordance with 1.2.4 herein and figure 1.

3.2.2 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 2.

3.2.3 <u>Block Diagrams</u>. The block diagrams shall be as specified on figure 3.

3.2.4 <u>Truth table</u>. The truth table shall be as specified on figure 4.

3.2.5 <u>Output load circuit</u>. The output load circuit shall be as specified on figure 5.

3.2.6 Timing waveforms. The timing waveforms shall be as specified on figure 6

3.2.7 <u>Radiation test circuit</u>. The radiation test circuit shall be maintained under document revision level control by the manufacturer and shall be made available to the preparing or acquiring activity upon request.

3.2.8 <u>Functional tests</u>. Various functional tests used to test this device are contained in the appendix A (herein). If the test patterns cannot be implemented due to test equipment limitations, alternate test patterns to accomplish the same results shall be allowed. For device classes Q and V, alternate test patterns shall be under the control of the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the preparing or acquiring activity upon request.

3.3 <u>Electrical performance characteristics and post-irradiation parameter limits</u>. Unless otherwise specified herein, the electrical performance characteristics and post-irradiation parameter limits are as specified in Table IA and shall apply over the full case operating temperature range.

3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in Table IIA. The electrical tests for each subgroup are defined in Table IA.

3.5 <u>Marking</u>. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked. For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device. For RHA product using this option, the RHA designator shall still be marked. Marking for device classes Q and V shall be in accordance with MIL-PRF-38535.

3.5.1 <u>Certification/compliance mark</u>. The certification mark for device classes Q and V shall be a "QML" or "Q" as required in MIL-PRF-38535.

3.6 <u>Certificate of compliance</u>. For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see 6.6.1 herein). For device class M, a certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.6.1 herein). The certificate of compliance submitted to DLA Land and Maritime-VA prior to listing as an approved source of supply for this drawing shall affirm that the manufacturer's product meets, for device classes Q and V.

3.7 <u>Certificate of conformance</u>. A certificate of conformance as required for device classes Q and V in MIL-PRF-38535 or for device class M in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-15232
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		A	5

	-	TABLE IA. Electrical performance cha	aracteristics.				
Test	Symbol	Test conditions $\underline{1}/$ -55°C \leq Tc \leq +125°C +3.0 V \leq Vpp \leq +3.6 V	Group A subgroups	Device type	Lir	nits	Unit
		unless otherwise specified		-	Min	Max	
Supply current maintaining a	IDD1	TXD=0V, R _L =∞, RS=0V, AB=0V, ZZ=V _{DD} or LBK=0V	1,2,3	All	-	18	mA
dominant output	I _{DD2}	TXD=0V, $R_L=60\Omega \pm 1\%$, RS=0V, AB=0V $\overline{ZZ}=V_{DD}$ LBK=0V	1,2,3	All		60	
Supply current receiving a dominant bus input	I _{DD3}	TXD=V _{DD} , R_L =60Ω ±1%, RS=0V, AB=0V or \overline{ZZ} =V _{DD} or LBK=0V, V _{ID} =1.4V, V _{IC} =2.5V	1,2,3	All		3	mA
	IDD4	TXD=V _{DD} , R _L =∞, RS ₌ 0V, AB=0V o ZZ=V _{DD} or LBK=0V	r 1,2,3	All		3	mA
Supply current maintaining a Recessive output	IDD5	TXD=V _{DD} , R _L =60 Ω ±1%, RS=0V, AB=0V or ZZ=V _{DD} or LBK=0V	1,2,3	All		3	
	IDD6	TXD=V _{DD} , R _L =60 Ω ±1%, RS=0V, AB=0V or ZZ=V _{DD} or LBK=0V, V _{ID} =0.0V, V _{IC} =2.5V	1,2,3	All		3	
	I _{DD7}	$R_{L}=\infty$, $\overline{ZZ}=0V$, $TXD=V_{DD}$, $RS=0V$ or V_{DD} , $V_{ID}=0.0V$, $V_{IC}=2.5V$		01		60	μΑ
Supply Current Operating In Sleep Mode	Idd7a	$ \begin{array}{l} R_{L} = 60\Omega \pm 1\%, \ \overline{ZZ} = 0V, \ TXD = V_{DD}, \\ RS = 0V \ \text{or} \ V_{DD} \end{array} $	1,2,3	-		60	
	I _{DD8}	$ \begin{array}{l} R_L = 60\Omega \pm 1\%, \ , \ \overline{ZZ} = 0V, \ TXD = V_{DD}, \\ RS = 0V \ or \ V_{DD} \end{array} $				115	
	IDD9	R _L =∞, RS=V _{DD} , TXD=V _{DD} , AB=0V o ZZ=V _{DD} or LBK=0V	^r 1,2,3	All		1.6	mA
Standby supply current	IDD10	$R_L=60\Omega \pm 1\%$, RS=V _{DD} , TXD=V _{DD} , AB=0V or \overline{ZZ} =V _{DD} or LBK=0V	1,2,3	All		1.65	mA
	I _{DD11}	$ \begin{array}{l} R_{L} = 60\Omega \pm 1\%, \ RS = V_{DD}, \ TXD = V_{DD}, \\ AB = 0V \ or \ \overline{ZZ} = V_{DD} \ or \ LBK = 0V, \\ V_{ID} = 0.0V, \ V_{IC} = 2.5V \end{array} $	1,2,3	All		1.6	mA
Supply Current Under High Voltage Fault <u>2</u> /	IDD12	R _L =∞, RS=0V, TXD=V _{DD} , AB=0V or ZZ=V _{DD} or LBK=0V, V _{CANH/L} =+/-24V	1,2,3	All		6	mA
Supply Current Operating in	I _{DD13}	RL=∞, RS=0V, TXD=0V, AB=V _{DD}	1,2,3	03		3	mA
Auto Loopback	Idd13A	$R_L=60\Omega \pm 1\%$, RS=0V, TXD=0V, AB=V _{DD}	1,2,3			3	
	IDD13B	$R_L=60\Omega \pm 1\%$, RS=0V, TXD=0V, AB=V _{DD} , V _{ID} =1.4V, V _{IC} =2.5V	1,2,3			3	
Supply Current Operating in	IDD14	R _L =∞, RS=0V, TXD=0V, LBK=V _{DD}	1,2,3	02		3	mA
Diagnostic Loopback	Idd14A	$\begin{array}{l} R_{\texttt{L}} = 60\Omega \pm 1\%, RS = 0V, TXD = 0V, \\ LBK = V_{DD} \end{array}$	1,2,3			3	
See footnotes at end of table.							
		0175					

STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME

А

5962-15232

	TABLE IA.	Electrical performance characteristic	<u>s</u> - Continued	l.			
Test	Symbol	Test conditions $\underline{1}/$ -55°C \leq Tc \leq +125°C	Group A subgroups	Device type	Limits		Unit
		$+3.0 V \leq V_{DD} \leq +3.0 V$ unless otherwise specified			Min	Max	
Bus output voltage (dominant) CANH	V _{CANH1}	TXD=0V, RS=0V, R _L =60 Ω ±1%, AB=0V or \overline{ZZ} =V _{DD} or LBK=0V	1,2,3	All	2.45	Vdd	V
Bus output voltage (dominant) CANL	V _{CANL1}	TXD=0V, RS=0V, R _L = $60\Omega \pm 1\%$, AB=0V or $\overline{ZZ}=V_{DD}$ or LBK=0V	1,2,3	All	0.50	1.25	V
Bus output voltage (recessive) CANH	V _{CANH2}	TXD= V_{DD} , RS=0V, RL=60 Ω ±1%, AB=0V or $\overline{ZZ}=V_{DD}$ or LBK=0V	1,2,3	All	2.0	3.0	V
Bus output voltage (recessive) CANL	V _{CANL2}	TXD=V _{DD} , RS=0V, R _L =60 Ω ±1%, AB=0V or \overline{ZZ} =V _{DD} or LBK=0V	1,2,3	All	2.0	3.0	V
Differential output voltage (dominant)	V _{ODD1}	TXD=0V, RS=0V, RL=60 Ω ±1%, AB=0V or $\overline{ZZ}=V_{DD}$ or LBK=0V	1,2,3	All	1.5	3.0	
	Vodd2	TXD=0V, RS=0V, $V_{\text{TEST}} = -7$ to +12V, AB=0V or $\overline{ZZ}=V_{\text{DD}}$ or LBK=0V	1,2,3	All	1.2	3.0	V
Differential output voltage (recessive)	V _{ODR1}	TXD=V _{DD} , RS=0V, R _L =60 Ω ±1%, AB=0V or \overline{ZZ} =V _{DD} or LBK=0V	1,2,3	All	-120	12	mV
	Vodr2	TXD=V _{DD} , RS=0V, R _L =∞, AB=0V or ZZ=V _{DD} or LBK=0V	1,2,3	All	-500	50	mV
Short-circuit output <u>3</u> /	Iosh1	V _{CANH} =-7 V, CANL=∞, TXD=0V, RS=0V, AB=0V or ZZ=V _{DD} or LBK=0V	1,2,3	All	-250		
	Iosh2	VCANL=12 V, CANL=∞, TXD=0V, RS=0V, AB=0V or ZZ=V _{DD} or LBK=0V	1,2,3	All		3	
	Iosl1	VCANL=-7 V, CANH=∞, TXD=0V, RS=0V, AB=0V or ZZ=V _{DD} or LBK=0V	1,2,3	All	-1		mA
	I _{OSL2}	VCANL=12, CANH=∞,TXD=0V, RS=0V, AB=0V or ZZ=V _{DD} or LBK=0V	1,2,3	All		250	

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-15232
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		A	7

TABLE IA. Electrical perform	nance char	acteristics - Continued.						
Test	Symbol	Test condi -55°C < TC - +3.0 V < VD	Group A subgroups	Device type	Lir	Unit		
		unless otherwise specified				Min	Max	
Receiver								
Positive-going input threshold voltage	V _{IT+}	AB=0V or $\overline{ZZ}=V_{DD}$ or LBK=0V, V _{IC} =2.5V		4,5,6	All	90	900	
Negative-going input threshold voltage	VIT-		V _{HST} =V _{IT+} - V _{IT-}		All	500		mV
Hysteresis voltage	VHST	VHST=VIT+ - VIT-			All	20		
	I _{IR1}	V_{CANH} or $V_{CANL} = 12V$		4,5,6	All		500	
	I _{IR2}	V_{CANH} or $V_{CANL} = 12V$ and $V_{DD} \le V_{SS}+0.3V$	AB=0V or	4,5,6	All		600	μA
Bias input current	I _{IR3}	VCANH OR VCANL= -7V	=0V. Other bus	4,5,6	All	-610		
	l _{IR4}	V_{CANH} or $V_{CANL} = -7V$ and $V_{DD} \le V_{SS} + 0.3V$	pin (V _{CANH} or V _{CANL}) at 0V	4,5,6	All	-450		
CANH Capacitance <u>4</u> /	Сн	CANH to V _{SS} , V _{I=} 0.025*Sin(2E6πt)+2 TXD=V _{DD} , AB=0V or Z	3V, Z=V _{DD} or LBK=0V	4,5,6	All		50	
CANL Capacitance <u>4</u> /	C∟	CANL to V _{SS} , V _{I=} 0.025*Sin(2E6πt)+2 TXD=V _{DD} , AB=0V or Z	2.3V, Z=V _{DD} or LBK=0V	4,5,6	All		50	pF
Differential capacitance <u>4</u> /	C _{ID}	CANH to CANL, $V_I = 0$ TXD= V_{DD} , AB= $0V$ or \overline{Z}	.025*Sin(2E6πt), Ζ=V _{DD} or LBK=0V	4,5,6	All		25	
Differential input resistance	RID			4,5,6	All	40	100	
Single ended input resistance CANH	RH	AB=0V or $\overline{ZZ}=V_{DD}$ or LBK=0V		4,5,6	All	20	50	kΩ
Single ended input resistance CANL	R∟			4,5,6	All	20	50	
Percent difference between RH and RL	RM	2* (RL-RH) /(RL	-+RH)*100	4,5,6	All		3.0	%

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-15232
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		A	8

	TABLE IA	A. Electrical performance characteristic	<u>s</u> - Continued	l.			
Test	Symbol Test conditions $1/$ -55°C \leq Tc \leq +125°C +3.0 V \leq Vpp \leq +3.6 V		Group A subgroups	Device type	Limits		Unit
		unless otherwise specified			Min	Max	
Analog Input (RS)							
Input voltage for enabling High- speed mode (8Mbps operation)	V _{RS1}	TXD=V _{DD} , R _L =60 Ω ±1%, AB=0V or ZZ=V _{DD} or LBK=0V	9,10,11	All	Vss	300	mV
Input Voltage for enabling Standby mode	Vrs2	TXD=V _{DD} , R _L =60 Ω ±1%, AB=0V or \overline{ZZ} =V _{DD} or LBK=0V	9,10,11	All	0.75*V _{DD}	5.5	V
High-Speed mode input current	I _{RS1}	V _{RS} =0V	9,10,11	All	-500	-100	μA
	I _{RS2}	V _{RS} =0.75*V _{DD}	9,10,11	All		30	μA
Standby mode input current	I _{RS3}	V _{RS} =5.5V	9,10,11	All		50	μA
Cold sparing leakage current	I _{RS4}	V_{RS} =5.5V or $V_{RS} \le 0.3V$, $V_{DD} \le V_{SS}$ +0.3V	9,10,11	All	-20	20	μΑ
TTL I/O (TXD, ZZ AB, RXD, LB	K)						
Input Voltage High	V _{IH}		9,10,11	All	2.00		V
Input Voltage Low	V _{IL}		9,10,11	All		0.8	V
Input leakage current on TXD	I _{IOD}	V _{in} =0V or V _{in} =5.5V	9,10,11	All	-60	100	μA
Input leakage current on pins (ZZ, AB, LBK)	I _{IO}	V _{in} =0V or V _{in} =5.5V	9,10,11	All	-10	100	μA
Cold sparing leakage current (TXD, \overline{ZZ} AB, RXD, LBK)	I _{CS}	$V_{in}=0.0V$ and $V_{in}=5.5V$, $V_{DD} \le V_{SS}+0.3V$	9,10,11	All	-20	20	μA
Output high voltage on RXD	V _{он}	I _{OH} =-4mA	9,10,11	All	2.4		V
Output Low voltage on RXD	V _{OL}	I _{OL} =4mA	9,10,11	All		0.4	V
Input Capacitance <u>3</u> /	Сю	TXD or \overline{ZZ} or AB or RXD or LBK to V _{SS} , V _{I=} 0.025*Sin(2E6 π t), RS=0V	9,10,11	All		10	pF

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-15232
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		A	9

	TABLE IA	A. Electrical performance characteristics	<u>s</u> - Continued				
Test	Symbol	Test conditions <u>1</u> / -55°C ≤ Tc ≤ +125°C +3.0 V ≤ V _{DD} ≤ +3.6 V	ons <u>1</u> / +125°C ≤ +3.6 V Group A subgroups type Limits		nits Max	Unit	
Driver AC Electronics Characte	eristics	uniess otherwise specified			IVIIII	Max	
	t _{PLHT1}	$\begin{array}{l} \text{RS=0V, } R_{L} = 60\Omega \pm 1\%, \text{AB=0V or} \\ \overline{ZZ} = V_{\text{DD}} \text{ or } LBK=0V, V_{\text{TXD}} \leq 125 \text{kHz} \\ \text{(Square wave, 50\% duty cycle, tr} \leq \\ \text{6ns, tf} \leq \text{6ns, } Z_{O} = 50\Omega) \end{array}$	9,10,11	All		85	
Propagation delay time (TXD input dominant to CAN dominant <u>5</u> /	t _{PLHT2}	RS with 10kΩ to V _{SS} , R _L =60Ω ±1%, AB=0V or \overline{ZZ} =V _{DD} or LBK=0V, V _{TXD} ≤ 125 kHz (Square wave, 50% duty cycle, tr ≤ 6ns, tf ≤ 6ns, Z _O =50Ω)	9,10,11	All		260	ns
	t _{plht3}	RS with 100kΩ to V _{SS} , R _L =60Ω ±1%, AB=0V or \overline{ZZ} =V _{DD} or LBK= 0V, V _{TXD} ≤ 125 kHz (Square wave, 50% duty cycle, tr ≤ 6ns, tf ≤ 6ns, Z _O =50Ω)	9,10,11	All		1200	
	t _{PHLT1}	$\begin{array}{l} \text{RS=0V, } \text{R}_{\text{L}}\text{=}60\Omega \pm 1\%, \text{ AB=0V or} \\ \overline{\text{ZZ}}\text{=}\text{V}_{\text{DD}} \text{ or } \text{LBK=0V, } \text{V}_{\text{TXD}} \leq 125 \text{kHz} \\ \text{(Square wave, 50\% duty cycle, tr} \leq 6 \text{ns, tf} \leq 6 \text{ns, } \text{Z}_{\text{O}}\text{=}50\Omega \text{)} \end{array}$	9,10,11	All		120	
Propagation delay time, (TXD recessive to CAN recessive) <u>5</u> /	t _{PHLT2}	RS with 10kΩ to V _{SS} , R _L =60Ω ±1%, AB=0V or \overline{ZZ} =V _{DD} or LBK=0V, V _{TXD} ≤ 125kHz (Square wave, 50% duty cycle, tr ≤ 6ns, tf ≤ 6ns, Z _D =50 Ω)	9,10,11	All		485	ns
t _{Pi}	t _{PHLT3}	RS with 100k Ω to V _{SS} , R _L =60 Ω ±1%, AB=0V or \overline{ZZ} =V _{DD} or LBK=0V, V _{TXD} ≤ 125kHz (Square wave, 50% duty cycle, tr ≤ 6ns, tf ≤ 6ns, Z ₀ =50 Ω)	9,10,11	All		1650	

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-15232
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		A	10

Test	Symbol	Test con -55⁰C <u><</u> To	ditions <u>1</u> / c <u><</u> +125⁰C	Group A subgroups	Device type	Lin	nits	Unit
		+3.0 V \leq VI unless otherv			.,	Min	Max	
	t _{SKPT1}	$\begin{array}{l} \text{RS=0V, } R_{\text{L}}\text{=}60\Omega \pm \\ \overline{ZZ}\text{=}V_{\text{DD}} \text{ or } LBK=0V \\ (\text{Square wave, } 50\% \\ \text{6ns, } \text{tf} \leq \text{6ns, } Z_{\text{O}}\text{=}50\% \\ \end{array}$	1%, AB=0V or ′, V _{TXD} ≤ 125kHz ⁄₀ duty cycle, tr ≤ 0Ω)	9,10,11	All		75	
Pulse skew (tPHL – tPLH) <u>5</u> /	t _{SKPT2}	RS with 10kΩ to V AB=0V or $\overline{ZZ}=V_{DD}$ ≤ 125kHz (Square cycle, tr ≤ 6ns, tf ≤	ss, $R_{L}=60\Omega \pm 1\%$, or LBK=0V, V_{TXD} wave, 50% duty 6ns, $Z_{O}=50\Omega$)	9,10,11	All		450	ns
	t _{SKPT3}	RS with 100kΩ to 1 ±1%, AB=0V or \overline{ZZ} V _{TXD} ≤ 125kHz (Sq duty cycle, tr ≤ 6ns Z ₀ 50Ω)	Vss, R _L =60Ω =V _{DD} or LBK=0V, uare wave, 50% , tf ≤ 6ns,	9,10,11	All		1250	
	trt1	$\begin{array}{l} \text{RS=0V, } R_{\text{L}}\text{=}60\Omega \pm \\ \overline{ZZ}\text{=}V_{\text{DD}} \text{ or } LBK=0V \\ (\text{Square wave, } 50\% \\ \text{6ns, } \text{tf} \leq \text{6ns, } Z_{\text{O}}\text{=}50\% \\ \end{array}$	1%, AB=0V or /, V _{TXD} ≤ 125kHz ⁄₀ duty cycle, tr ≤ 0Ω)	9,10,11	All	5	80	
Differential CAN signal rise time 3/ 5/	trt2	RS with 10kΩ to V AB=0V or $\overline{ZZ}=V_{DD}$ ≤ 125kHz (Square cycle, tr ≤ 6 s, tf ≤ 6	ss, R_{L} =60 Ω ±1%, or LBK=0V, V_{TXD} wave, 50% duty 6ns, Z_{O} =50 Ω)	9,10,11	All	14	250	ns
	tятз	RS with 100kΩ to V_{\pm} 1%, AB=0V or ZZ V _{TXD} ≤ 125kHz (Sq duty cycle, tr ≤ 6ns Z ₀ =50Ω)	V_{SS} , $R_L=60\Omega$ = V_{DD} or LBK=0V, uare wave, 50% , tf ≤ 6ns,	9,10,11	All	40	1000	
	tft1	$\begin{array}{l} \text{RS=0V, } R_{\text{L}}\text{=}60\Omega \pm \\ \overline{\text{ZZ}}\text{=} V_{\text{DD}} \text{ or } \text{LBK=0V} \\ (\text{Square wave, } 50\% \\ 6\text{ns, } \text{tf} \leq 6\text{ns, } Z_{\text{O}}\text{=}50\% \\ \end{array}$	1%, AB=0V or 7, V _{TXD} ≤ 125kHz 6 duty cycle, tr ≤ 0Ω)	9,10,11	All	20	75	
Differential CAN signal fall time 3/ 5/	tft2	RS with 10kΩ to V AB=0V or ZZ=V _{DD} ≤ 125kHz (Square cycle, tr ≤ 6ns, tf ≤	ss, R_L =60Ω ±1%, or LBK=0V, V_{TXD} wave, 50% duty 6ns, Z_0 =50Ω)	9,10,11	All	30	185	ns
	tft3	RS with 100kΩ to V_{\pm} 1%, AB=0V or ZZ_{TxD} ≤ 125kHz (Sq duty cycle, tr ≤ 6ns Z_0 =50Ω)	V_{SS} , R _L =60Ω = V_{DD} or LBK=0V, uare wave, 50% , tf ≤ 6ns,	9,10,11	All	40	800	-
Enable time from standby deactivate to CAN dominant	tens	$\begin{array}{l} TXD=0V, \ R_L=60\Omega:\\ \overline{ZZ}=V_{DD} \ or \ LBK=0V\\ (Square \ wave, \ 50\%\\ 6ns, \ tf \le 6ns, \ Z_0=50\\ 0.75^*V_{DD}) \end{array}$	±1%, AB=0V or ′, V _{RS} ≤ 125kHz ⁄6 duty cycle, tr ≤ 0Ω, RS <	9,10,11	All		1.5	μs
Enable time from sleep deactivate to CAN dominant	t _{ENZ}	RS=0V, TXD=0V, F ≤ 50kHz (Square w cycle, tr ≤ 6ns, tf ≤	$R_{L}=60\Omega \pm 1\%, V_{ZZ}$ vave, 50% duty 6ns, Z_0=50\Omega)	9,10,11	01		7	μS
			T					
		NG	SIZE			5	962-15	232

REVISION LEVEL

А

SHEET

11

|--|

DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990

	TABLE IA	A. Electrical performance characteristics	<u>s</u> - Continued.				
Test	Symbol	Test conditions $\underline{1}/$ -55°C \leq Tc \leq +125°C +3.0 V \leq V _{DD} \leq +3.6 V unless otherwise specified	Group A subgroups	Device type	Lim	nits Max	Unit
Disable time from standby assert to CAN recessive	toiss	$\begin{array}{l} TXD=0V,\ R_{L}{=}60\Omega \pm 1\%,\ AB{=}0V \text{ or}\\ \overline{ZZ}{=}V_{DD} \text{ or }LBK=0V,\ V_{RS} \leq 125kHz\\ (Square wave , 50\% duty cycle, tr \leq 6ns,\ tf \leq 6ns,\ Z_{O}{=}50\Omega,\\ RS \geq 0.75^*V_{DD}) \end{array}$	9,10,11	All		150	ns
Disable time from sleep assert to CAN recessive	toisz	RS=0V, TXD=0V, R _L =60Ω ±1%, V_{ZZ} ≤ 50kHz (Square wave, 50% duty cycle, tr ≤ 6ns, tf ≤ 6ns, Z ₀ =50Ω)	9,10,11	01		100	ns
Receiver AC Electronics Chara	acteristics						
Propagation delay time (CANH recessive to RXD recessive) <u>5</u> /	t _{PLHR}	RS=0V, TXD=V _{DD} , R _L =∞ Ohms AB=0V or \overline{ZZ} =V _{DD} or LBK=0V, V _{CANH} ≤ 125kHz (Square wave, 50% duty cycle, tr ≤ 6ns, tf ≤ 6ns, Z _O =50Ω), V _{CANL} =1.25V	9,10,11	All		60	ns
Propagation delay time (CANH dominant to RXD dominant) <u>5</u> /	t PHLR	RS=0V, TXD=V _{DD} , R _L =∞ Ohms AB=0V or \overline{ZZ} =V _{DD} or LBK=0V, V _{CANH} ≤ 125kHz (Square wave, 50% duty cycle, tr ≤ 6ns, tf ≤ 6ns, Z _O =50Ω), V _{CANL} =1.25V	9,10,11	All		60	ns
Pulse skew	t _{SKPR}	$t_{SKPR} = (t_{PHLR} - t_{PLHR})$	9,10,11	All		25	ns
RXD output signal rise time <u>3</u> / 5/	t _{RR}	$\begin{array}{l} \text{RS=0V, TXD=V_{\text{DD}}, R_{\text{L}}\text{=}60\Omega \pm 1\%,} \\ \text{AB=0V or } \overline{\text{ZZ}}\text{=}V_{\text{DD}} \text{ or LBK=0V, } V_{\text{CANH}} \\ \leq 125 \text{kHz} \text{ (Square wave, 50\% duty} \\ \text{cycle, } \text{tr} \leq 6 \text{ns, tf} \leq 6 \text{ns, } Z_{\text{O}}\text{=}50\Omega \text{),} \\ \text{V}_{\text{CANL}}\text{=}1.50 \text{V} \end{array}$	9,10,11	All		5	ns
RXD output signal fall time <u>3/ 5</u> /	t _{FR}	$\begin{array}{l} \text{RS=0V, TXD=V_{DD}, R_{L}=60\Omega \pm 1\%,} \\ \text{AB=0V or } \overline{\text{ZZ}}=\text{V}_{\text{DD}} \text{ or LBK=0V, V}_{\text{CANH}} \\ \leq 125\text{kHz} \text{ (Square wave, 50\% duty} \\ \text{cycle, tr} \leq 6\text{ns, tf} \leq 6\text{ns, Z}_{\text{O}}=50\Omega\text{),} \\ \text{V}_{\text{CANL}}=1.50\text{V} \end{array}$	9,10,11	All		5	ns

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-15232
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		A	12

Test	Symbol	Test conditions $\frac{1}{-55^{\circ}C} < T_{C} < +125^{\circ}C$	Group A	Device	Lin	nits	Unit
		$+3.0 \text{ V} \leq \text{V}_{\text{DD}} \leq +3.6 \text{ V}$	subgroups type		e		
		unless otherwise specified			Min	Max	
Transceiver Loopback AC Ele	ctronics Ch	aracteristics	•				
	t _{LOOPD1}	RS=0V, RL=60 Ω ±1%, AB=0V or \overline{ZZ} =V _{DD} or LBK=0V, V _{TXD} ≤ 125kHz (Square wave, 50% duty cycle, tr ≤ 6ns, tf ≤ 6ns, Z ₀ =50 Ω)	9,10,11	All		125	
Total loop delay, TXD to RXD, dominant <u>5</u> /	tloopd2	$ \begin{array}{l} R_{\rm S} \text{ with } 10 k\Omega \text{ to } V_{\rm SS}, \ R_{\rm L}{=}60\Omega \\ \pm 1\%, \ AB{=}0V \text{ or } \overline{ZZ}{=}V_{\rm DD} \text{ or} \\ LBK{=}0V, \ V_{TXD} \leq 125 \text{kHz} \text{ (Square} \\ \text{wave, } 50\% \text{ duty cycle, } tr \leq 6\text{ns, } tf \leq 6\text{ns, } Z_{O}{=}50\Omega \text{)} \end{array} $	9,10,11	All		800	ns
	tloopd3	$ \begin{array}{l} R_{S} \text{ with } 100 k\Omega \text{ to } V_{SS}, R_{L} = 60\Omega \\ \pm 1\%, AB = 0V \text{ or } \overline{ZZ} = V_{DD} \text{ or} \\ LBK = 0V, V_{TXD} \leq 125 KHz \text{ (Square} \\ \text{wave, } 50\% \text{ duty cycle, } tr \leq 6ns, tf \leq 6ns, Z_{O} = 50\Omega) \\ \end{array} $	9,10,11	All		1500	
	tloopr1	$\begin{array}{l} R_S = & 0 \text{V}, \ R_L = & 60 \Omega \pm 1\%, \ AB = & 0 \text{V} \text{ or} \\ \overline{ZZ} = & V_{DD} \text{ or } LBK = & 0 \text{V}, \ V_{TXD} \leq & 125 \text{kHz} \\ (\text{Square wave, } 50\% \text{ duty cycle, } \text{tr} \leq \\ & 6 \text{ns, } \text{tf} \leq & 6 \text{ns, } Z_0 = & 50 \Omega) \end{array}$	9,10,11	All		125	
Total loop delay, TXD to RXD, recessive <u>5</u> /	tloopr2	R_S with 10kΩ to V _{SS} , R _L =60Ω ±1%, AB=0V or \overline{ZZ} =V _{DD} or LBK=0V, V _{TXD} ≤ 125kHz (Square wave, 50% duty cycle, tr ≤ 6ns, tf ≤ 6ns, Z _O =50Ω)	9,10,11	All		800	ns
	tloopr3	Rs with 100kΩ to Vss, RL=60Ω ±1%, AB=0V or \overline{ZZ} =V _{DD} or LBK=0V, V _{TXD} ≤ 125kHz (Square wave, 50% duty cycle, tr ≤ 6ns, tf ≤ 6ns, Z ₀ =50Ω)	9,10,11	All		1650	
Loopback delay, TXD to RXD <u>5</u> /	tьвк	$\label{eq:Rs=0V, RL=60\Omega \pm 1\%, LBK=V_{DD}, \\ V_{TXD} \leq 125 \text{kHz} \text{ (Square wave, 50\%)} \\ \text{duty cycle, tr} \leq 6\text{ns, tf} \leq 6\text{ns,} \\ Z_O=50\Omega \text{)} \\ \end{array}$	9,10,11	02		20	ns
Loopback delay, TXD to RXD <u>5</u> /	t _{AB1}	$\begin{array}{l} R_{S}{=}0V, \ R_{L}{=}60\Omega, \ AB{=}V_{DD}, \ V_{TXD} \leq \\ 125kHz \ (Square wave, 50\% \ duty \\ cycle, tr \leq 6ns, tf \leq 6ns, Z_0{=}50\Omega) \end{array}$	9,10,11	03		20	ns
Loopback delay, CAN input to RXD <u>5</u> /	t _{AB2}	R_{s} =0V, TXD=V _{DD} , R_{L} =∞ Ohms AB=V _{DD} , V _{CANH} ≤ 125kHz (Square wave, 50% duty cycle, tr ≤ 6ns, tf ≤ 6ns, Z ₀ =50Ω)	9,10,11	02		60	ns

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-15232
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		A	13

TABLE IA. Electrical performance characteristics - Continued.

- 1/ Devices supplied to this drawing meet all levels M, D, P, L, and R of irradiation. However, these devices are only characterized at the "R" level. Pre and Post irradiation values are identical unless otherwise specified in Table IA. When performing post irradiation electrical measurements for any RHA level, T_A = +25°C
- <u>2</u>/ Guaranteed by characterization for $V_{CANH/L} = \pm 36 V$
- 3/ Guaranteed by characterization
- 4/ This parameter is tested initially and after any design or process change which could affect this parameter, and therefore shall be guaranteed to the limits specified in Table IA.
- 5/ For $C_L = 75$ pF or equivalent on the ATE or 15 pF ±20% for bench test characterization.

TABLE IB. SEP test limits . 1/ 2/

Davias	Single Event Latch-up (SEL) Test <u>3</u> / Bias V _{DD} = 3.6 V
Device Туре	Effective LET no Latch-up
All	LET ≤117 MeV-mg/cm²

- 1/ For SEP test conditions, see 4.4.4.3 herein.
- 2/ Technology characterization and model verification supplemented by in-line data may be used in lieu of end-of-line testing. Test plan must be approved by TRB and qualifying activity.
- <u>3</u>/ Worst case temperature for latch-up test $T_A = +125^{\circ}C \pm 10^{\circ}C$.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-15232
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		A	14

Case outline X

Symbol	Millimeters			
	Min	Max		
А	3.05 max			
b	0.38	0.48		
С	0.102	0.152		
D	6.35	6.61		
е	1.27 typ.			
E	6.35	6.61		
E2	4.32	4.58		
E3	1.015	5 typ.		
L	8.25 max			
Q	0.66 min			
S1	0.92	1.32		

NOTES:

- 1. All exposed metal and metalized areas shall be gold plated per MIL-PRF-38535.
- 2. The seal ring and lids are electrically connected to $V_{\mbox{\scriptsize SS}}.$
- 3. Lead finish is in accordance with MIL-PRF-38535.
- 4. Package material: opaque 90% minimum alumina ceramic.
- 5. ESD classification mark or dot is located in the pin 1 corner within area shown.

FIGURE 1. Case outline - Continued

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-15232
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		A	16

Case .	Х
--------	---

Device type	01
Case outline	Х
Terminal number	Terminal symbol
1 2 3 4 5 6 7 8	TXD Vss Vdd RXD ZZ CANL CANH RS

Device type	02
Case outline	Х
Terminal number	Terminal symbol
1 2 3 4 5 6 7 8	TXD V _{SS} V _{DD} RXD LBK CANL CANH RS

Device type	03
Case outline	Х
Terminal number	Terminal symbol
1 2 3 4 5 6 7 8	TXD V _{SS} V _{DD} RXD AB CANL CANH RS

FIGURE 2.	Terminal	connections
-----------	----------	-------------

SIZE

Α

REVISION LEVEL

А

5962-15232

17

SHEET

STANDARD			
MICROCIRCUIT DRAWING			

DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990

- Notes: 1. 50 pF including scope probe and test socket.
 - 2. Measurement of data output occurs at the low to high or high to low transition mid-point, typically, VDD/2

FIGURE 5. Output load circuit

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-15232
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL A	SHEET 20

4. VERIFICATION

4.1 <u>Sampling and inspection</u>. For device classes Q and V, sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.

4.2 <u>Screening</u>. For device classes Q and V, screening shall be in accordance with MIL-PRF-38535, and shall be conducted on all devices prior to qualification and technology conformance inspection.

- 4.2.1 Additional criteria for device classes Q and V.
 - a. The burn-in test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document revision level control of the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 of MIL-STD-883.
 - b. Interim and final electrical test parameters shall be as specified in table II herein.
 - c. Additional screening for device class V beyond the requirements of device class Q shall be as specified in MIL-PRF-38535, appendix B.

4.3 <u>Qualification inspection for device classes Q and V</u>. Qualification inspection for device classes Q and V shall be in accordance with MIL-PRF-38535. Inspections to be performed shall be those specified in MIL-PRF-38535 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4).

4.4 <u>Conformance inspection</u>. Technology conformance inspection for classes Q and V shall be in accordance with MIL-PRF-38535 including groups A, B, C, D, and E inspections, and as specified herein (see 4.4.1 through 4.4.4).

4.4.1 Group A inspection.

- a. Tests shall be as specified in table II herein.
- b. For device classes Q and V, subgroups 7 and 8 shall include verifying the functionality of the device.

4.4.2 <u>Group C inspection</u>. The group C inspection end-point electrical parameters shall be as specified in table II herein.

4.4.2.1 <u>Additional criteria for device classes Q and V</u>. The steady-state life test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The test circuit shall be maintained under document revision level control by the device manufacturer's TRB in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883.

4.4.3 <u>Group D inspection</u>. The group D inspection end-point electrical parameters shall be as specified in table IIA herein.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-15232
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		A	28

4.4.4 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be marked as radiation hardness assured (see 3.5 herein).

- a. End-point electrical parameters shall be as specified in table IIA herein.
- b. For device classes Q and V, the devices or test vehicle shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535 for the RHA level being tested. All device classes must meet the post-irradiation end-point electrical parameter limits as defined in table IA at $T_A = +25^{\circ}C \pm 5^{\circ}C$, after exposure, to the subgroups specified in table IIA herein.

4.4.4.1 <u>Total dose irradiation testing</u>. Total dose irradiation testing shall be performed in accordance with MIL-STD-883 method 1019, condition A, and as specified herein.

4.4.4.1.1 <u>Accelerated aging test</u>. Accelerated aging tests shall be performed on all devices requiring a RHA level greater than 5k rad(Si). The post-anneal end-point electrical parameter limits shall be as specified in table IA herein and shall be the pre-irradiation end-point electrical parameter limit at 25° C $\pm 5^{\circ}$ C. Testing shall be performed at initial qualification and after any design or process changes which may affect the RHA response of the device.

4.4.4.2 <u>Neutron irradiation</u>. When specified in the purchase order or contract, Neutron irradiation test shall be conducted by using a neutron fluence of approximately 1 x 10¹⁴ neutrons/cm².

4.4.4.3 <u>Single event phenomena (SEP)</u>. When specified in the purchase order or contract, SEP testing shall be performed on class V devices. SEP testing shall be performed on the Standard Evaluation Circuit (SEC) or alternate SEP test vehicle as approved by the qualifying activity at initial qualification and after any design or process changes which may affect the upset or latch-up characteristics. Test four devices with zero failures. ASTM F1192 may be used as a guideline when performing SEP testing. The test conditions for SEP are as follows:

- a. The ion beam angle of incidence shall be between normal to the die surface and 60° to the normal, inclusive (i.e. $0^{\circ} \le$ angle $\le 60^{\circ}$). No shadowing of the ion beam due to fixturing or package related affects is allowed.
- b. The fluence shall be ≥ 100 errors or $\geq 10^7$ ions/cm².
- c. The flux shall be between 10² and 10⁶ ions/cm²/s. The cross-section shall be verified to be flux independent by measuring the cross-section at two flux rates which differ by at least an order of magnitude.
- d. The particle range shall be ≥ 20 micron in silicon.
- e. The test temperature shall be the maximum rated operating temperature ±10°C for the latch-up measurements.
- f. Bias conditions shall be defined by the manufacturer for the latch-up measurements.
- g. For SEP test limits, see table IB herein.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-15232
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		A	29

Test requirements	Subgroups (in accordance with MIL-PRF-38535, table III)		
	Device Device class Q class V		
Interim electrical parameters (see 4.2)	1,4,7,9	1,4,7,9	
Static burn-in (method 1015)	Not Required	Required	
Post burn-in interim electrical parameters	1,4,7,9	1,4,7,9 <u>4</u> /	
Dynamic burn-in (method 1015)	Required	Required	
Post burn-in interim electrical parameters	1,4,7,9	1,4,7,9 <u>4</u> /	
Final electrical parameters (see 4.2)	1, 2, 3, 4, 5, 6, 7, 8A, 8B, 9, 10, 11	1, 2, 3, 4, 5, 6, 7, 8A, 8B, 9, 10, 11	
Group A test requirements (see 4.4)	1, 2, 3, 4, 5, 6, 7, 8A, 8B, 9, 10, 11	1, 2, 3, 4, 5, 6, 7, 8A, 8B, 9, 10, 11	
Group C end-point electrical parameters (see 4.4)	1, 2, 3, 4, 5, 6, 7, 8A, 8B, 9, 10, 11	1, 2, 3, 7, 8A, 8B, 9, 10, 11 <u>4</u> /	
Group D end-point electrical parameters (see 4.4)	1, 2, 3, 4, 5, 6, 7, 8A, 8B, 9, 10, 11	1, 2, 3, 4, 5, 6, 7, 8A, 8B, 9, 10, 11	
Group E end-point electrical parameters (see 4.4)	1, 4, 7, 9	1, 4, 7, 9	

TABLE IIA. Electrical test requirements. 1/ 2/ 3/ 5/

1/ PDA applies to subgroup 1 (see 4.2.3). For device class V, PDA applies to subgroups 1 and 7 (see 4.2.3).

 $\frac{1}{2}$ The burn-in shall meet the requirements of 4.2.1a herein.

3/ On all class V lots, the device manufacturer shall maintain read-and-record data (as a minimum on disk) for burn-in electrical parameters (group A, subgroup 1), in accordance with MIL-PRF-38535. For pre-burn-in and interim electrical parameters, the read-and-record requirements are for delta measurements only.

4/ Delta limits shall be required only on table IA, subgroup 1. The delta values shall be computed with reference to the previous interim electrical parameters. The delta limits are specified in table IIB.

5/ The device manufacturer may, at his option, either complete subgroup 1 electrical parameter measurements, including delta measurements, within 96 hours after burn-in completion (removal of bias) or may complete subgroup 1 electrical measurements without delta measurements within 24 hours after burn-in completion (removal of bias). When the manufacturer elects to perform the subgroup 1 electrical parameter measurements without delta measurements, there is no requirement to perform the pre-burn-in electrical tests (first interim electrical parameters test in table IIA).

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-15232
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		A	30

	Device type All	
Parameters <u>1/</u>		
Input voltage low, 3.0V	VIL30	± 100mV
Input voltage high, 3.0V	VIH30	± 100mV
Input voltage low, 3.6V	VIL36	± 100mV
Input voltage high, 3.6V	VIH30	± 1 00mV
Supply current maintaining a dominant output	IDD1	± 500µA
Supply current maintaining a dominant output	IDD2	± 3000µA
Supply current maintaining a recessive output	IDD4	± 300µA
Supply current maintaining a recessive output	IDD5	± 300µA
Standby supply current	IDD9	± 300µA
Standby supply current	IDD10	± 300µA

TABLE IIB. Burn-in and operating life test delta parameters (+25°C).

 $\underline{1'}$ The above parameter shall be recorded before and after the required burn-in and life tests to determine the delta burn-in

5. PACKAGING

5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-PRF-38535 for device classes Q and V.

6. NOTES

6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.

6.1.1 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.

6.2 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished using DD Form 1692, Engineering Change Proposal.

6.3 <u>Record of users</u>. Military and industrial users should inform DLA Land and Maritime when a system application requires configuration control and which SMD's are applicable to that system. DLA Land and Maritime will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DLA Land and Maritime-VA, telephone (614) 692-8108.

6.4 <u>Comments</u>. Comments on this drawing should be directed to DLA Land and Maritime-VA, Columbus, Ohio 43218-3990, or telephone (614)692-0540.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-15232
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		A	31

6.5 <u>Abbreviations, symbols, and definitions</u>. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535 and MIL-HDBK-1331.

6.6 Sources of supply.

6.6.1 <u>Sources of supply for device classes Q and V</u>. Sources of supply for device classes Q and V are listed in MIL-HDBK-103 and QML-38535. The vendors listed in QML-38535 have submitted a certificate of compliance (see 3.6 herein) to DLA Land and Maritime-VA and have agreed to this drawing.

6.7 <u>Additional information</u>. When applicable, a copy of the following additional data shall be maintained and available from the device manufacturer:

- a. RHA test conditions (SEP).
- b. Observed single event transient (SET).
- c. Occurrence of latch-up (SEL).

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-15232
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		A	32

STANDARD MICROCIRCUIT DRAWING BULLETIN

DATE: 16-10-06

Approved sources of supply for SMD 5962-15232 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DLA Land and Maritime-VA. This information bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535. DLA Land and Maritime maintains an online database of all current sources of supply at https://landandmaritimeapps.dla.mil/Programs/Smcr/.

Standard microcircuit drawing PIN <u>1</u> /	Vendor CAGE number	Vendor similar PIN <u>2</u> /
5962R1523201QXC	65342	UT64CAN3330XQC
5962R1523202QXC	65342	UT64CAN3331XQC
5962R1523203QXC	65342	UT64CAN3332XQC
5962R1523201VXC	65342	UT64CAN3330XVC
5962R1523202VXC	65342	UT64CAN3331XVC
5962R1523203VXC	65342	UT64CAN3332XVC

- 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed, contact the Vendor to determine its availability.
- <u>2</u>/ <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGE number

65342

Vendor name and address

Aeroflex Colorado Springs, Inc. dba Cobham Semiconductor Solutions 4350 Centennial Blvd. Colorado Springs, CO 80907-7370

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.