REVISIONS

<table>
<thead>
<tr>
<th>LTR</th>
<th>DESCRIPTION</th>
<th>DATE (YR-MO-DA)</th>
<th>APPROVED</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Added device type 03 and 04. Paragraph 1.4 changed the output voltage, negative voltage regulator for device type 01 from -1.2 V to -22 V dc to -1.2 V to -27 V dc. Table I; corrected the limit for the current limit test I<sub>MAX</sub>, should be specified as a min limit. -sld</td>
<td>07-11-28</td>
<td>Robert M. Heber</td>
</tr>
<tr>
<td>B</td>
<td>Sheet 5; made changes to the thermal regulation and current limit tests. Sheet 6; made changes to the thermal regulation, adjustment pin current change, and the minimum load current tests. Sheet 7; made changes to the current limit and long term stability tests. -sld</td>
<td>08-08-11</td>
<td>Robert M. Heber</td>
</tr>
<tr>
<td>C</td>
<td>Corrected Figure 1 to show the pin configuration without the ceramic seal across all pins but only to show the seal on each pin individually. Figure 1 corrected the dimensions R and S1, removed the dimension D2 for case outline X. -sld</td>
<td>08-10-23</td>
<td>Robert M. Heber</td>
</tr>
<tr>
<td>D</td>
<td>Added radiation hardness assurance requirements. -sld</td>
<td>11-12-06</td>
<td>Charles F. Saffle</td>
</tr>
<tr>
<td>E</td>
<td>Update drawing to the latest requirements of MIL-PRF-38534. --gc</td>
<td>18-10-16</td>
<td>Charles F. Saffle</td>
</tr>
</tbody>
</table>

PMIC N/A

STANDARD MICROCIRCUIT DRAWING

THIS DRAWING IS AVAILABLE FOR USE BY ALL DEPARTMENTS AND AGENCIES OF THE DEPARTMENT OF DEFENSE

AMSC N/A

PREPARED BY

Steve Duncan

CHECKED BY

Greg Cecil

APPROVED BY

Robert M. Heber

DRAWING APPROVAL DATE

07-04-25

REVISION LEVEL

E

SIZE

A

CAGE CODE

67268

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.
1. SCOPE

1.1 Scope. This drawing documents five product assurance classes as defined in paragraph 1.2.3 and MIL-PRF-38534. A choice of case outlines and lead finishes which are available and are reflected in the Part or Identifying Number (PIN). When available, a choice of radiation hardness assurance levels are reflected in the PIN.

1.2 PIN. The PIN is as shown in the following example:

<table>
<thead>
<tr>
<th>Federal stock class designator (see 1.2.1)</th>
<th>RHA designator (see 1.2.1)</th>
<th>Device type designator (see 1.2.2)</th>
<th>Device class designator (see 1.2.3)</th>
<th>Case outline designator (see 1.2.4)</th>
<th>Lead finish designator (see 1.2.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5962</td>
<td>R</td>
<td>05219</td>
<td>01</td>
<td>K</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Drawing number

1.2.1 Radiation hardness assurance (RHA) designator. RHA marked devices meet the MIL-PRF-38534 specified RHA levels and are marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device.

1.2.2 Device type(s). The device type(s) identify the circuit function as follows:

<table>
<thead>
<tr>
<th>Device type</th>
<th>Generic number</th>
<th>Circuit function</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>8601, 8602</td>
<td>Dual voltage regulator, positive and negative, adjustable</td>
</tr>
<tr>
<td>02</td>
<td>8603, 8604</td>
<td>Dual voltage regulator, positive and negative, adjustable</td>
</tr>
<tr>
<td>03</td>
<td>8607, 8608</td>
<td>Dual voltage regulator, positive, adjustable</td>
</tr>
<tr>
<td>04</td>
<td>8609, 8610</td>
<td>Dual voltage regulator, negative, adjustable</td>
</tr>
</tbody>
</table>

1.2.3 Device class designator. This device class designator is a single letter identifying the product assurance level. All levels are defined by the requirements of MIL-PRF-38534 and require QML Certification as well as qualification (Class H, K, and E) or QML Listing (Class G and D). The product assurance levels are as follows:

<table>
<thead>
<tr>
<th>Device class</th>
<th>Device performance documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>Highest reliability class available. This level is intended for use in space applications.</td>
</tr>
<tr>
<td>H</td>
<td>Standard military quality class level. This level is intended for use in applications where non-space high reliability devices are required.</td>
</tr>
<tr>
<td>G</td>
<td>Reduced testing version of the standard military quality class. This level uses the Class H screening and In-Process Inspections with a possible limited temperature range, manufacturer specified incoming flow, and the manufacturer guarantees (but may not test) periodic and conformance inspections (Group A, B, C and D).</td>
</tr>
<tr>
<td>E</td>
<td>Designates devices which are based upon one of the other classes (K, H, or G) with exception(s) taken to the requirements of that class. These exception(s) must be specified in the device acquisition document; therefore the acquisition document should be reviewed to ensure that the exception(s) taken will not adversely affect system performance.</td>
</tr>
<tr>
<td>D</td>
<td>Manufacturer specified quality class. Quality level is defined by the manufacturers internal, QML certified flow. This product may have a limited temperature range.</td>
</tr>
</tbody>
</table>
1.2.4 Case outline(s). The case outline(s) are as designated in MIL-STD-1835 and as follows:

<table>
<thead>
<tr>
<th>Outline letter</th>
<th>Descriptive designator</th>
<th>Terminals</th>
<th>Package style</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>See figure 1</td>
<td>6</td>
<td>Dual-in-line</td>
</tr>
<tr>
<td>Y</td>
<td>See figure 1</td>
<td>6</td>
<td>Surface Mount</td>
</tr>
</tbody>
</table>

1.2.5 Lead finish. The lead finish is as specified in MIL-PRF-38534.

1.3 Absolute maximum ratings. 1/

Input-Output differential voltage:
- Positive regulator:
 - Device types 01, 02 and 03 .. 40 V
- Negative regulator:
 - Device types 01 and 04 .. -30 V
 - Device type 02 .. -40 V

- Operating junction temperature range ... -55°C to +150°C
- Thermal resistance, junction-to-case (θjc) each regulator 5°C/W
- Lead temperature (soldering, 10 seconds) .. 300°C
- Storage temperature range .. -65°C to +150°C

1.4 Recommended operating conditions.

Output voltage range:
- Positive voltage regulator:
 - Device types 01, 02, and 03 ... +1.2 V to +37 V dc
- Negative voltage regulator:
 - Device type 01 and 04 .. -1.2 V to -27 V dc
 - Device type 02 .. -1.2 V to -37 V dc
- Case operating temperature range (Tc) .. -55°C to +125°C

1.5 Radiation features.

Device types 01, 03, and 04: 2/
- Maximum total dose available (dose rate = 50 - 300 rads(Si)/s) 100 krad (Si) 3/
- Maximum total dose available (dose rate ≤ 10 mrad(Si)/s) 50 krad (Si) 4/

2. APPLICABLE DOCUMENTS

2.1 Government specification, standards, and handbooks. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

1/ Stresses above the absolute maximum ratings may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.

2/ Bipolar device types may degrade from displacement damage from radiation which could affect RHA levels. These device types have not been characterized for displacement damage.

3/ The active elements that make up the devices on this drawing have been tested for Total Ionizing Dose (TID) in accordance with MIL-STD-883 test method 1019 condition A. The active element will be re-tested after design or process changes that can affect RHA response of these devices. RHA testing of the active elements covered on this SMD were done in alternate packages (TO3) and (TO39), not the packages as specified in paragraph 1.2.4.

4/ The active elements that make up the devices on this drawing have been tested for Enhanced Low Dose Rate Sensitivity (ELDRS) in accordance with MIL-STD-883, Method 1019 condition D for initial qualification. No ELDRS effect was observed. The devices will be re-tested after design or process changes that can affect RHA response of these devices. RHA testing of the active elements covered on this SMD were done in alternate packages (TO3) and (TO39), not the packages as specified in paragraph 1.2.4.
2.2 Order of precedence. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

3.1 Item requirements. The individual item performance requirements for device classes D, E, G, H, and K shall be in accordance with MIL-PRF-38534. Compliance with MIL-PRF-38534 shall include the performance of all tests herein or as designated in the device manufacturer's Quality Management (QM) plan or as designated for the applicable device class. The manufacturer may eliminate, modify or optimize the tests and inspections herein, however the performance requirements as defined in MIL-PRF-38534 shall be met for the applicable device class. In addition, the modification in the QM plan shall not affect the form, fit, or function of the device for the applicable device class.

3.2 Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38534 and herein.

3.2.1 Case outline(s). The case outline(s) shall be in accordance with 1.2.4 herein and figure 1.

3.2.2 Terminal connections. The terminal connections shall be as specified on figure 2.

3.2.3 Block diagram. The block diagram shall be as specified on figure 3.

3.2.4 Radiation exposure circuit. The radiation exposure circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing and acquiring activity upon request.

3.2.5 Maximum power dissipation versus case temperature table. The maximum power dissipation versus case temperature is specified in table IB.

3.3 Electrical performance characteristics. Unless otherwise specified herein, the electrical performance characteristics are as specified in table IA and shall apply over the full specified operating temperature range.

3.4 Electrical test requirements. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are defined in table IA.

3.5 Marking of device(s). Marking of device(s) shall be in accordance with MIL-PRF-38534. The device shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's vendor similar PIN may also be marked.

3.6 Data. In addition to the general performance requirements of MIL-PRF-38534, the manufacturer of the device described herein shall maintain the electrical test data (variables format) from the initial quality conformance inspection group A lot sample, for each device type listed herein. Also, the data should include a summary of all parameters manually tested, and for those which, if any, are guaranteed. This data shall be maintained under document revision level control by the manufacturer and be made available to the preparing activity (DLA Land and Maritime -VA) upon request.
TABLE IA. Electrical performance characteristics.

<table>
<thead>
<tr>
<th>Test</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Group A subgroups</th>
<th>Device types</th>
<th>Limits Min</th>
<th>Limits Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test</td>
<td>Symbol</td>
<td>Conditions</td>
<td>Group A subgroups</td>
<td>Device types</td>
<td>Limits Min</td>
<td>Limits Max</td>
<td>Unit</td>
</tr>
<tr>
<td>Test</td>
<td>Symbol</td>
<td>Conditions</td>
<td>Group A subgroups</td>
<td>Device types</td>
<td>Limits Min</td>
<td>Limits Max</td>
<td>Unit</td>
</tr>
<tr>
<td>Group A subgroups</td>
<td>Device types</td>
<td>Limits Min</td>
<td>Limits Max</td>
<td>Unit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>See footnotes at end of table.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

POSITIVE REGULATOR

- **Reference voltage 1/**
 - **VREF**
 - 3 V ≤ (VIN - VOUT) ≤ VDIFF Max,
 - 10 mA ≤ IOUT ≤ IMAX

 - **Group A**
 - **Subgroups**

 - **Device types**

 - **Limits** Min: 1.20, Max: 1.30 V

- **Line regulation 1/**
 - **AVOUT**
 - 3 V ≤ (VIN - VOUT) ≤ VDIFF Max,
 - IOUT = 10 mA

 - **Group A**
 - **Subgroups**

 - **Device types**

 - **Limits** Min: 0.03 %/V, Max: 0.05 %/V

- **Load regulation 1/**
 - **AVOUT**
 - 10 mA ≤ IOUT ≤ IMAX, VOUT ≤ 5 V

 - **Group A**
 - **Subgroups**

 - **Device types**

 - **Limits** Min: 60 mV, Max: 1.2 %

- **Thermal regulation 3/**

 - IOUT = 1.5 A, (VIN - VOUT) = 13.3 V,
 - 20 ms pulse, 20 W, T C = +25°C

 - **Group A**
 - **Subgroups**

 - **Device types**

 - **Limits** Min: 0.07 %/W

- **Ripple rejection ratio 3/**

 - VOUT = 10 V, f = 120 Hz,
 - CADJ = 10 µf

 - **Group A**
 - **Subgroups**

 - **Device types**

 - **Limits** Min: 66 dB

- **Adjustment pin current 1/**

 - **IADJ**

 - **Group A**
 - **Subgroups**

 - **Device types**

 - **Limits** Min: 100 µA

- **Adjustment pin current change 1/**

 - **ΔIADJ**

 - **Group A**
 - **Subgroups**

 - **Device types**

 - **Limits** Min: 5 µA

- **Minimum load current 1/**
 - **MIN**
 - (VIN - VOUT) = 40 V

 - **Group A**
 - **Subgroups**

 - **Device types**

 - **Limits** Min: 5 mA

- **Current limit 1/**

 - **IMAX**
 - (VIN - VOUT) ≤ 15 V

 - **Group A**
 - **Subgroups**

 - **Device types**

 - **Limits** Min: 1.5 A

- **Long term stability 3/**

 - **ΔVOUT**
 - TA = +125°C

 - **Group A**
 - **Subgroups**

 - **Device types**

 - **Limits** Min: 1 %

- **Thermal resistance, each regulator, 3/**

 - **θJC**

 - **Group A**
 - **Subgroups**

 - **Device types**

 - **Limits** Min: 5 °C/W

See footnotes at end of table.
TABLE IA. Electrical performance characteristics - Continued.

<table>
<thead>
<tr>
<th>Test</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Group A subgroups</th>
<th>Device types</th>
<th>Limits</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>-55°C ≤ TC ≤ +125°C, VIN - VOUT = 5 V, IOUT = 0.5 A, P ≤ PMAX unless otherwise specified</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEGATIVE REGULATOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference voltage 1/</td>
<td>VREF</td>
<td>3 V ≤ (VIN - VOUT) ≤ VDIFF Max, 10 mA ≤ IOUT ≤ IMAX</td>
<td>1,2,3</td>
<td>01,02,04</td>
<td>-1.200</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.300</td>
<td></td>
</tr>
<tr>
<td>Line regulation 1/ 2/</td>
<td>ΔVOUT</td>
<td>3 V ≤ (VIN - VOUT) ≤ 30 V</td>
<td>1,2,3</td>
<td>01,04</td>
<td>0.02</td>
<td>%/V</td>
</tr>
<tr>
<td></td>
<td>ΔVIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 V ≤ (VIN - VOUT) ≤ 40 V</td>
<td>02</td>
<td></td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Load regulation 1/ 2/</td>
<td>ΔVOUT</td>
<td>10 mA ≤ IOUT ≤ IMAX, VOUT ≤ 5 V</td>
<td>1,2,3</td>
<td>01,02,04</td>
<td>25</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>ΔIOUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 mA ≤ IOUT ≤ IMAX, VOUT ≥ 5 V</td>
<td>01,04</td>
<td></td>
<td>0.5</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal regulation 3/</td>
<td>IOUT</td>
<td>IOUT = 1.5 A, (VIN - VOUT) = 13.3 V, 20 ms pulse, 20 W, TC = +25°C</td>
<td>1</td>
<td>01,02,04</td>
<td>0.02</td>
<td>%/W</td>
</tr>
<tr>
<td>Ripple rejection ratio 3/</td>
<td>VOUT</td>
<td>VOUT = -10 V, f = 120 Hz, CADJ = 10 µf</td>
<td>1,2,3</td>
<td>01,02,04</td>
<td>66</td>
<td>dB</td>
</tr>
<tr>
<td>Adjustment pin current 1/</td>
<td>IADJ</td>
<td></td>
<td>1,2,3</td>
<td>01,02,04</td>
<td>100</td>
<td>µA</td>
</tr>
<tr>
<td>Adjustment pin current change 1/</td>
<td>ΔIADJ</td>
<td>10 mA ≤ IOUT ≤ IMAX</td>
<td>1,2,3</td>
<td>01,02,04</td>
<td>5</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.0 V ≤ (VIN - VOUT) ≤ 30 V</td>
<td>01, 04</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.0 V ≤ (VIN - VOUT) ≤ 40 V</td>
<td>1,2,3</td>
<td>02</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Minimum load current 1/ 3/</td>
<td>IMIN</td>
<td>(VIN - VOUT) = 30 V</td>
<td>1,2,3</td>
<td>01,04</td>
<td>5</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(VIN - VOUT) ≤ 10 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(VIN - VOUT) = 40 V</td>
<td>02</td>
<td></td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

See footnotes at end of table.
TABLE IA. Electrical performance characteristics - Continued.

<table>
<thead>
<tr>
<th>Test</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Group A subgroups</th>
<th>Device types</th>
<th>Limits</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I_MAX</td>
<td>(V_{IN} - V_{OUT}) \leq 15 \text{ V},</td>
<td>1,2,3</td>
<td>01, 04</td>
<td>1.5</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{IN} - V_{OUT}) = 30 \text{ V}, T_C = +25\degree \text{ C}</td>
<td>1</td>
<td>01, 04</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{IN} - V_{OUT}) = 40 \text{ V}, T_C = +25\degree \text{ C}</td>
<td>1</td>
<td>02</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>\Delta V_{OUT}/\Delta T_{TIME}</td>
<td>T_A = +125\degree \text{ C}</td>
<td>2</td>
<td>01, 02, 04</td>
<td>1</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>\Theta_{JC}</td>
<td></td>
<td>1,2,3</td>
<td>01,02, 04</td>
<td>5</td>
<td>\degree \text{ C/W}</td>
</tr>
</tbody>
</table>

1/ The active elements that make up these devices have been tested to the requirements of RHA designator level "R" (100 krad(Si)) of Method 1019, condition A of MIL-STD-883 and low dose rate tested to the requirements of Method 1019, condition D of MIL-STD-883 to 50 krad(Si) at +25\degree \text{ C} for these parameters. No ELDRS effect was observed. The devices will be re-tested after design or process changes that can affect RHA response of these devices. RHA testing of the active elements covered on this SMD were done in alternate packages (TO3) and (TO39), not the packages as specified in paragraph 1.2.4.

2/ Regulation is measured at a constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered under the specification for thermal regulation. Measurements taken at the output lead must be adjusted for lead resistance.

3/ Parameter shall be tested at initial device characterization and after design or process changes. Parameter shall be guaranteed to the limits specified in table I for all lots not specifically tested.
Table IB. Maximum power dissipation versus case temperature table.

<table>
<thead>
<tr>
<th>Case Temperature (°C)</th>
<th>Maximum power dissipation (Watts)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>One regulator "ON"</td>
</tr>
<tr>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>29</td>
</tr>
<tr>
<td>10</td>
<td>28</td>
</tr>
<tr>
<td>15</td>
<td>27</td>
</tr>
<tr>
<td>20</td>
<td>26</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>30</td>
<td>24</td>
</tr>
<tr>
<td>35</td>
<td>23</td>
</tr>
<tr>
<td>40</td>
<td>22</td>
</tr>
<tr>
<td>45</td>
<td>21</td>
</tr>
<tr>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>55</td>
<td>19</td>
</tr>
<tr>
<td>60</td>
<td>18</td>
</tr>
<tr>
<td>65</td>
<td>17</td>
</tr>
<tr>
<td>70</td>
<td>16</td>
</tr>
<tr>
<td>75</td>
<td>15</td>
</tr>
<tr>
<td>80</td>
<td>14</td>
</tr>
<tr>
<td>85</td>
<td>13</td>
</tr>
<tr>
<td>90</td>
<td>12</td>
</tr>
<tr>
<td>95</td>
<td>11</td>
</tr>
<tr>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>105</td>
<td>9</td>
</tr>
<tr>
<td>110</td>
<td>8</td>
</tr>
<tr>
<td>115</td>
<td>7</td>
</tr>
<tr>
<td>120</td>
<td>6</td>
</tr>
<tr>
<td>125</td>
<td>5</td>
</tr>
<tr>
<td>130</td>
<td>4</td>
</tr>
<tr>
<td>135</td>
<td>3</td>
</tr>
<tr>
<td>140</td>
<td>2</td>
</tr>
<tr>
<td>145</td>
<td>1</td>
</tr>
<tr>
<td>150</td>
<td>0</td>
</tr>
</tbody>
</table>
Case outline X.

FIGURE 1. Case outline(s).
Table

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Inches</th>
<th>Millimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>A</td>
<td>.220</td>
<td>5.59</td>
</tr>
<tr>
<td>(\phi)</td>
<td>.028</td>
<td>.032</td>
</tr>
<tr>
<td>(\phi)</td>
<td>.085</td>
<td>.095</td>
</tr>
<tr>
<td>D</td>
<td>.650</td>
<td>.660</td>
</tr>
<tr>
<td>D1</td>
<td>.410</td>
<td>.420</td>
</tr>
<tr>
<td>e</td>
<td>.100 BSC</td>
<td>2.54 BSC</td>
</tr>
<tr>
<td>e1</td>
<td>.200 BSC</td>
<td>5.08 BSC</td>
</tr>
<tr>
<td>e2</td>
<td>.108 BSC</td>
<td>2.74 BSC</td>
</tr>
<tr>
<td>eA</td>
<td>.700</td>
<td>.740</td>
</tr>
<tr>
<td>E</td>
<td>.410</td>
<td>.420</td>
</tr>
<tr>
<td>F</td>
<td>.035</td>
<td>.045</td>
</tr>
<tr>
<td>G1</td>
<td>.123 BSC</td>
<td>3.12 BSC</td>
</tr>
<tr>
<td>G2</td>
<td>.2025</td>
<td>.2125</td>
</tr>
<tr>
<td>L1</td>
<td>.230</td>
<td>5.84</td>
</tr>
<tr>
<td>L2</td>
<td>.150 REF</td>
<td>3.81 REF</td>
</tr>
<tr>
<td>(\phi)</td>
<td>.140</td>
<td>.150</td>
</tr>
<tr>
<td>Q</td>
<td>.122 TYP</td>
<td>3.10 TYP</td>
</tr>
<tr>
<td>R</td>
<td>.065 TYP</td>
<td>1.65 TYP</td>
</tr>
<tr>
<td>S1</td>
<td>.028</td>
<td>0.71</td>
</tr>
</tbody>
</table>

Notes:
1. The U.S. preferred system of measurement is the metric SI. This item was designed using inch-pound units of measurement. In case of problems involving conflicts between the metric and inch-pound units, the inch-pound units shall rule.
2. The package contains a BeO substrate.
3. The case is electrically isolated.

FIGURE 1. Case outline(s) - Continued.
FIGURE 1. Case outline(s) - Continued.
Case outline Y - continued.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Inches</th>
<th>Millimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>A</td>
<td>.220</td>
<td>5.59</td>
</tr>
<tr>
<td>A2</td>
<td>.015</td>
<td>.025</td>
</tr>
<tr>
<td>Øb</td>
<td>.028</td>
<td>.032</td>
</tr>
<tr>
<td>Øb3</td>
<td>.085</td>
<td>.095</td>
</tr>
<tr>
<td>D</td>
<td>.650</td>
<td>.660</td>
</tr>
<tr>
<td>D1</td>
<td>.410</td>
<td>.420</td>
</tr>
<tr>
<td>e</td>
<td>.100 BSC</td>
<td>2.54 BSC</td>
</tr>
<tr>
<td>e1</td>
<td>.200 BSC</td>
<td>5.08 BSC</td>
</tr>
<tr>
<td>e2</td>
<td>.108 BSC</td>
<td>2.74 BSC</td>
</tr>
<tr>
<td>E</td>
<td>.410</td>
<td>.420</td>
</tr>
<tr>
<td>F</td>
<td>.035</td>
<td>.045</td>
</tr>
<tr>
<td>G1</td>
<td>.123 BSC</td>
<td>3.12 BSC</td>
</tr>
<tr>
<td>G2</td>
<td>.2025</td>
<td>.2125</td>
</tr>
<tr>
<td>H</td>
<td>.866</td>
<td>.906</td>
</tr>
<tr>
<td>L1</td>
<td>.055</td>
<td>.065</td>
</tr>
<tr>
<td>L2</td>
<td>.150 REF</td>
<td>3.81 REF</td>
</tr>
<tr>
<td>Øp</td>
<td>.140</td>
<td>.150</td>
</tr>
<tr>
<td>Q</td>
<td>.122 TYP</td>
<td>3.10 TYP</td>
</tr>
<tr>
<td>R</td>
<td>.065 TYP</td>
<td>1.65 TYP</td>
</tr>
<tr>
<td>S1</td>
<td>.028</td>
<td>0.71</td>
</tr>
</tbody>
</table>

NOTES:
1. The U.S. preferred system of measurement is the metric SI. This item was designed using inch-pound units of measurement. In case of problems involving conflicts between the metric and inch-pound units, the inch-pound units shall rule.
2. The package contains a BeO substrate.
3. The case is electrically isolated.

FIGURE 1. Case outline(s) - Continued.
<table>
<thead>
<tr>
<th>Device types</th>
<th>01 and 02</th>
<th>03</th>
<th>04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case outlines</td>
<td>X and Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terminal number</td>
<td>Terminal symbol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Positive ADJ</td>
<td>Positive V_{OUT}</td>
<td>Positive V_{IN}</td>
<td>Negative ADJ</td>
</tr>
<tr>
<td>POS_ADJ_1</td>
<td>POS_VOUT_1</td>
<td>POS_VIN_1</td>
<td>NEG_ADJ_1</td>
</tr>
</tbody>
</table>

FIGURE 2. Terminal connections.

Device types 01 and 02

![Block diagram](image)

FIGURE 3. Block diagram.
FIGURE 3. Block diagram - Continued.
TABLE II. Electrical test requirements.

<table>
<thead>
<tr>
<th>MIL-PRF-38534 test requirements</th>
<th>Subgroups (in accordance with MIL-PRF-38534, group A test table)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interim electrical parameters</td>
<td></td>
</tr>
<tr>
<td>Final electrical parameters</td>
<td>1,2,3</td>
</tr>
<tr>
<td>Group A test requirements</td>
<td>1,2,3</td>
</tr>
<tr>
<td>Group C end-point electrical parameters</td>
<td>1,2,3</td>
</tr>
<tr>
<td>End-point electrical parameters for Radiation Hardness Assurance (RHA) devices</td>
<td>1</td>
</tr>
</tbody>
</table>

* PDA applies to subgroup 1.

3.7 Certificate of compliance. A certificate of compliance shall be required from a manufacturer in order to supply to this drawing. The certificate of compliance (original copy) submitted to DLA Land and Maritime -VA shall affirm that the manufacturer's product meets the performance requirements of MIL-PRF-38534 and herein.

3.8 Certificate of conformance. A certificate of conformance as required in MIL-PRF-38534 shall be provided with each lot of microcircuits delivered to this drawing.

4. VERIFICATION

4.1 Sampling and inspection. Sampling and inspection procedures shall be in accordance with MIL-PRF-38534 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.

4.2 Screening. Screening shall be in accordance with MIL-PRF-38534. The following additional criteria shall apply:

 (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to either DLA Land and Maritime -VA or the acquiring activity upon request. Also, the test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 of MIL-STD-883.

 (2) TA as specified in accordance with table I of method 1015 of MIL-STD-883.

b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.

4.3 Conformance and periodic inspections. Conformance inspection (CI) and periodic inspection (PI) shall be in accordance with MIL-PRF-38534 and as specified herein.
4.3.1 **Group A inspection (CI).** Group A inspection shall be in accordance with MIL-PRF-38534 and as follows:

a. Tests shall be as specified in table II herein.

b. Subgroups 4, 5, 6, 7, 8A, 8B, 9, 10, and 11 shall be omitted.

4.3.2 **Group B inspection (PI).** Group B inspection shall be in accordance with MIL-PRF-38534.

4.3.3 **Group C inspection (PI).** Group C inspection shall be in accordance with MIL-PRF-38534 and as follows:

a. End-point electrical parameters shall be as specified in table II herein.

1. Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to either DLA Land and Maritime -VA or the acquiring activity upon request. Also, the test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883.

2. TA as specified in accordance with table I of method 1005 of MIL-STD-883.

3. Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

4.3.4 **Group D inspection (PI).** Group D inspection shall be in accordance with MIL-PRF-38534.

4.3.5. **Radiation hardness assurance (RHA).** RHA qualification is required only for those devices with the RHA designator as specified herein. See table IIIA and table IIIB.

Table IIIA. Radiation Hardness Assurance Method Table.

<table>
<thead>
<tr>
<th>RHA method Employed</th>
<th>Testing at 2X rated total dose</th>
<th>Worst Case Analysis Performed</th>
<th>End points after dose is achieved includes minimum maximum, and room temperatures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Element Level</td>
<td>Hybrid Device Level</td>
<td>Includes temperature effects</td>
</tr>
<tr>
<td>Yes</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

See notes on next page.
Table IIIB. Hybrid level and element level test table.

<table>
<thead>
<tr>
<th></th>
<th>Radiation Test</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Dose</td>
<td>Heavy Ion</td>
<td>Proton</td>
<td>Neutron</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low Dose Rate</td>
<td>High Dose Rate (HDR)</td>
<td>ELDRS (upset)</td>
<td>SEL (latch-up)</td>
<td>Low Energy</td>
<td>High Energy</td>
</tr>
<tr>
<td>Hybrid</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>(N)</td>
<td>(N)</td>
<td>(N)</td>
</tr>
<tr>
<td>Element</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bipolar, linear or mixed signal > 90 nm</td>
<td>X (50 krad)</td>
<td>X (100 krad)</td>
<td>X (50 krad)</td>
<td>(N)</td>
<td>(N)</td>
<td>(N)</td>
</tr>
</tbody>
</table>

NOTES:
- **X** = Radiation testing done (Level)
- **G** = Guaranteed by design or process
- **(N)** = Not yet tested
- **N/A** = Not applicable for this SMD

4.3.5.1 Radiation Hardness Assurance (RHA) inspection. RHA qualification is required for those devices with the RHA designator as specified herein. End-point electrical parameters for radiation hardness assurance (RHA) devices shall be specified in table II. Radiation testing will be in accordance with the qualifying activity (DLA Land and Maritime -VQ) approved plan and with MIL-PRF-38534, Appendix G.

a. The hybrid device manufacturer shall establish procedures controlling component radiation testing, and shall establish radiation test plans used to implement component lot qualification during procurement. Test plans and test reports shall be filed and controlled in accordance with the manufacturer's configuration management system.

b. The hybrid device manufacturer shall designate a RHA program manager to oversee component lot qualification, and to monitor design changes for continued compliance to RHA requirements.

4.3.5.1.1 Hybrid level qualification.

4.3.5.1.1.2 Total Ionizing dose irradiation testing. Hybrid level and component level testing are the same for the devices on this SMD since the active elements are independent of each other and accessible to the device leads for test. The qualification was performed on the active components, independent of the hybrid.

4.3.5.1.2 Component level qualification.

4.3.5.1.2.1 Total Ionizing dose irradiation testing. A minimum of twenty samples of each element is tested at initial qualification and after any design or process changes which may affect the RHA response of the device type. Five biased and five unbiased are tested at High Dose Rate (HDR) in accordance with condition A of method 1019 of MIL-STD-883 to 100 krad(Si). Another ten devices are tested at Low Dose Rate (LDR) in accordance with condition D of method 1019 of MIL-STD-883 to 50 krad(Si). The resulting data is evaluated in accordance with Condition D, ELDRS characterization.

4.3.5.2 Lot Acceptance. Each lot of active elements shall be evaluated for acceptance in accordance with MIL-PRF-38534 and herein.

4.3.5.2.1 Total Ionizing Dose. Samples from every wafer lot will be assembled into a representative device type and tested for wafer lot acceptance RLAT (Radiation Lot Acceptance Testing). Four biased and four unbiased devices are tested in accordance with condition A, of method 1019 of MIL-STD-883 to 100 Krad(Si).
5. PACKAGING

5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-PRF-38534.

6. NOTES

6.1 Intended use. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.

6.2 Replaceability. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.

6.3 Configuration control of SMD's. All proposed changes to existing SMD's will be coordinated as specified in MIL-PRF-38534.

6.4 Record of users. Military and industrial users should inform DLA Land and Maritime when a system application requires configuration control and the applicable SMD. DLA Land and Maritime will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DLA Land and Maritime-VA, telephone (614) 692-8108.

6.5 Comments. Comments on this drawing should be directed to DLA Land and Maritime-VA, Columbus, Ohio 43218-3990, or telephone (614) 692-1081.

6.6 Sources of supply. Sources of supply are listed in MIL-HDBK-103 and QML-38534. The vendors listed in MIL-HDBK-103 and QML-38534 have submitted a certificate of compliance (see 3.7 herein) to DLA Land and Maritime-VA and have agreed to this drawing.
Approved sources of supply for SMD 5962-05219 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38534 during the next revisions. MIL-HDBK-103 and QML-38534 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DLA Land and Maritime - VA. This information bulletin is superseded by the next dated revisions of MIL-HDBK-103 and QML-38534. DLA Land and Maritime maintains an online database of all current sources of supply https://landandmaritimeapps.dla.mil/programs/Smcr/.

<table>
<thead>
<tr>
<th>Standard microcircuit drawing PIN 1/</th>
<th>Vendor CAGE number</th>
<th>Vendor similar PIN 2/</th>
</tr>
</thead>
<tbody>
<tr>
<td>5962-0521901KXA</td>
<td>88379</td>
<td>VRG8601-201-2S</td>
</tr>
<tr>
<td>5962R0521901KXA</td>
<td>88379</td>
<td>VRG8601-901-2S</td>
</tr>
<tr>
<td>5962-0521901KXC</td>
<td>88379</td>
<td>VRG8601-201-1S</td>
</tr>
<tr>
<td>5962R0521901KXC</td>
<td>88379</td>
<td>VRG8601-901-1S</td>
</tr>
<tr>
<td>5962R0521901KYA</td>
<td>88379</td>
<td>VRG8602-901-2S</td>
</tr>
<tr>
<td>5962R0521901KYC</td>
<td>88379</td>
<td>VRG8602-901-1S</td>
</tr>
<tr>
<td>5962-0521902KXA</td>
<td>3/ 88379</td>
<td>VRG8603-201-2S</td>
</tr>
<tr>
<td>5962-0521902KXC</td>
<td>3/ 88379</td>
<td>VRG8603-201-1S</td>
</tr>
<tr>
<td>5962-0521902KYA</td>
<td>3/ 88379</td>
<td>VRG8604-201-2S</td>
</tr>
<tr>
<td>5962-0521902KYC</td>
<td>3/ 88379</td>
<td>VRG8604-201-1S</td>
</tr>
<tr>
<td>5962-0521903KXA</td>
<td>88379</td>
<td>VRG8607-201-2S</td>
</tr>
<tr>
<td>5962R0521903KXA</td>
<td>88379</td>
<td>VRG8607-901-2S</td>
</tr>
<tr>
<td>5962-0521903KXC</td>
<td>88379</td>
<td>VRG8607-201-1S</td>
</tr>
<tr>
<td>5962R0521903KXC</td>
<td>88379</td>
<td>VRG8607-901-1S</td>
</tr>
<tr>
<td>5962-0521903KYA</td>
<td>88379</td>
<td>VRG8608-201-2S</td>
</tr>
<tr>
<td>5962-0521903KYC</td>
<td>88379</td>
<td>VRG8608-901-2S</td>
</tr>
<tr>
<td>5962-0521904KXA</td>
<td>88379</td>
<td>VRG8609-201-1S</td>
</tr>
<tr>
<td>5962R0521904KXA</td>
<td>88379</td>
<td>VRG8609-901-2S</td>
</tr>
<tr>
<td>5962-0521904KXC</td>
<td>88379</td>
<td>VRG8609-901-1S</td>
</tr>
<tr>
<td>5962R0521904KXC</td>
<td>88379</td>
<td>VRG8610-201-2S</td>
</tr>
<tr>
<td>5962-0521904KYA</td>
<td>88379</td>
<td>VRG8610-901-2S</td>
</tr>
<tr>
<td>5962R0521904KYA</td>
<td>88379</td>
<td>VRG8610-901-1S</td>
</tr>
<tr>
<td>5962R0521904KYC</td>
<td>88379</td>
<td>VRG8610-901-1S</td>
</tr>
<tr>
<td>5962-0521905KXA</td>
<td>88379</td>
<td>VRG8607-201-2S</td>
</tr>
<tr>
<td>5962R0521905KXA</td>
<td>88379</td>
<td>VRG8607-901-2S</td>
</tr>
<tr>
<td>5962-0521905KXC</td>
<td>88379</td>
<td>VRG8607-201-1S</td>
</tr>
<tr>
<td>5962R0521905KXC</td>
<td>88379</td>
<td>VRG8607-901-1S</td>
</tr>
<tr>
<td>5962-0521905KYA</td>
<td>88379</td>
<td>VRG8608-201-2S</td>
</tr>
<tr>
<td>5962-0521905KYC</td>
<td>88379</td>
<td>VRG8608-901-2S</td>
</tr>
<tr>
<td>5962-0521906KXA</td>
<td>88379</td>
<td>VRG8609-201-1S</td>
</tr>
<tr>
<td>5962R0521906KXA</td>
<td>88379</td>
<td>VRG8609-901-2S</td>
</tr>
<tr>
<td>5962-0521906KXC</td>
<td>88379</td>
<td>VRG8609-901-1S</td>
</tr>
<tr>
<td>5962R0521906KXC</td>
<td>88379</td>
<td>VRG8610-201-2S</td>
</tr>
<tr>
<td>5962-0521906KYA</td>
<td>88379</td>
<td>VRG8610-901-2S</td>
</tr>
<tr>
<td>5962-0521906KYC</td>
<td>88379</td>
<td>VRG8610-901-1S</td>
</tr>
<tr>
<td>5962R0521906KYC</td>
<td>88379</td>
<td>VRG8610-901-1S</td>
</tr>
</tbody>
</table>

1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the Vendor to determine its availability.

2/ Caution. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

3/ Not available from an approved source of supply.

Vendor CAGE number

88379

Vendor name and address

Aeroflex Plainview Incorporated
35 South Service Road
Plainview, NY 11803

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.