REVISIONS

<table>
<thead>
<tr>
<th>LTR</th>
<th>DESCRIPTION</th>
<th>DATE (YR-MO-DA)</th>
<th>APPROVED</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Table II, add note to Group C end-point test parameters. Update boilerplate paragraphs. -gz</td>
<td>10-11-01</td>
<td>Charles F. Saffle</td>
</tr>
<tr>
<td>B</td>
<td>Figure 1: Corrected the dimension q3 from "17.78 and 18.03 mm" and ",.700 and .710 inches" to "15.24 and 15.49 mm" and ",.600 and .610 inches". Editorial changes throughout. -sld</td>
<td>13-12-04</td>
<td>Charles F. Saffle</td>
</tr>
<tr>
<td>C</td>
<td>Update drawing to the latest requirements of MIL-PRF-38534. –gc</td>
<td>19-09-16</td>
<td>James R. Eschmeyer</td>
</tr>
</tbody>
</table>

STANDARD MICROCIRCUIT DRAWING

- DRAWING APPROVAL DATE: 06-06-09
- APPROVED BY: Raymond Monnin
- CHECKED BY: Greg Cecil
- PREPARED BY: Steve Duncan

MICROCIRCUIT, HYBRID, 15 VOLT, DUAL CHANNEL, DC/DC CONVERTER

<table>
<thead>
<tr>
<th>REV</th>
<th>SHEET</th>
<th>REV STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>REV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SHEET</td>
</tr>
</tbody>
</table>

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.
1. SCOPE

1.1 Scope. This drawing documents five product assurance classes as defined in paragraph 1.2.3 and MIL-PRF-38534. A choice of case outlines and lead finishes which are available and are reflected in the Part or Identifying Number (PIN). When available, a choice of radiation hardness assurance levels are reflected in the PIN.

1.2 PIN. The PIN is as shown in the following example:

<table>
<thead>
<tr>
<th>Federal stock class designator</th>
<th>RHA designator (see 1.2.1)</th>
<th>Device type (see 1.2.2)</th>
<th>Device class designator (see 1.2.3)</th>
<th>Case outline (see 1.2.4)</th>
<th>Lead finish (see 1.2.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5962</td>
<td>04244</td>
<td>01</td>
<td>K</td>
<td>X</td>
<td>A</td>
</tr>
</tbody>
</table>

Drawing number

1.2.1 Radiation hardness assurance (RHA) designator. RHA marked devices meet the MIL-PRF-38534 specified RHA levels and are marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device.

1.2.2 Device type. The device type identify the circuit function as follows:

<table>
<thead>
<tr>
<th>Device type</th>
<th>Generic number</th>
<th>Circuit function</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>S2815D</td>
<td>DC/DC converter, 10 W, ±15 V output</td>
</tr>
</tbody>
</table>

1.2.3 Device class designator. This device class designator is a single letter identifying the product assurance level. All levels are defined by the requirements of MIL-PRF-38534 and require QML Certification as well as qualification (Class H, K, and E) or QML Listing (Class G and D). The product assurance levels are as follows:

<table>
<thead>
<tr>
<th>Device class</th>
<th>Device performance documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>Highest reliability class available. This level is intended for use in space applications.</td>
</tr>
<tr>
<td>H</td>
<td>Standard military quality class level. This level is intended for use in applications where non-space high reliability devices are required.</td>
</tr>
<tr>
<td>G</td>
<td>Reduced testing version of the standard military quality class. This level uses the Class H screening and In-Process Inspections with a possible limited temperature range, manufacturer specified incoming flow, and the manufacturer guarantees (but may not test) periodic and conformance inspections (Group A, B, C, and D).</td>
</tr>
<tr>
<td>E</td>
<td>Designates devices which are based upon one of the other classes (K, H, or G) with exception(s) taken to the requirements of that class. These exception(s) must be specified in the device acquisition document; therefore the acquisition document should be reviewed to ensure that the exception(s) taken will not adversely affect system performance.</td>
</tr>
<tr>
<td>D</td>
<td>Manufacturer specified quality class. Quality level is defined by the manufacturers internal, QML certified flow. This product may have a limited temperature range.</td>
</tr>
</tbody>
</table>
1.2.4 **Case outline.** The case outline are as designated in MIL-STD-1835 and as follows:

<table>
<thead>
<tr>
<th>Outline letter</th>
<th>Descriptive designator</th>
<th>Terminals</th>
<th>Package style</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>See figure 1</td>
<td>7</td>
<td>Straight leads with end mounting tabs</td>
</tr>
</tbody>
</table>

1.2.5 **Lead finish.** The lead finish is as specified in MIL-PRF-38534.

1.3 **Absolute maximum ratings.**

- Input voltage range: -0.5 V dc to +60 V dc
- Lead temperature (soldering, 10 seconds): +300°C
- Storage temperature range: -55°C to +135°C

1.4 **Recommended operating conditions.**

- Input voltage range: +18 V dc to +40 V dc
- Output power: ≤ 10 W
- Case operating temperature range (Tc): -55°C to +85°C

2. **APPLICABLE DOCUMENTS**

2.1 **Government specification, standards, and handbooks.** The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATIONS

DEPARTMENT OF DEFENSE STANDARDS

DEPARTMENT OF DEFENSE HANDBOOKS

- MIL-HDBK-103 - List of Standard Microcircuit Drawings.
- MIL-HDBK-780 - Standard Microcircuit Drawings.

(Copies of these documents are available online at https://quicksearch.dla.mil)

2.2 **Order of precedence.** In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

1/ Stresses above the absolute maximum ratings may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.

STANDARD MICROCIRCUIT DRAWING
DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990

<table>
<thead>
<tr>
<th>SIZE</th>
<th>5962-04244</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REVISION LEVEL</th>
<th>SHEET</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>3</td>
</tr>
</tbody>
</table>

DSCC FORM 2234
APR 97
3. REQUIREMENTS

3.1 Item requirements. The individual item performance requirements for device classes D, E, G, H, and K shall be in accordance with MIL-PRF-38534. Compliance with MIL-PRF-38534 shall include the performance of all tests herein or as designated in the device manufacturer's Quality Management (QM) plan or as designated for the applicable device class. The manufacturer may eliminate, modify or optimize the tests and inspections herein, however the performance requirements as defined in MIL-PRF-38534 shall be met for the applicable device class. In addition, the modification in the QM plan shall not affect the form, fit, or function of the device for the applicable device class.

3.2 Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38534 and herein.

3.2.1 Case outline. The case outline shall be in accordance with 1.2.4 herein and figure 1.

3.2.2 Terminal connections. The terminal connections shall be as specified on figure 2.

3.3 Electrical performance characteristics. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full specified operating temperature range.

3.4 Electrical test requirements. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are defined in table I.

3.5 Marking of devices. Marking of devices shall be in accordance with MIL-PRF-38534. The device shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's vendor similar PIN may also be marked.

3.6 Data. In addition to the general performance requirements of MIL-PRF-38534, the manufacturer of the device described herein shall maintain the electrical test data (variables format) from the initial quality conformance inspection group A lot sample, for each device type listed herein. Also, the data should include a summary of all parameters manually tested, and for those which, if any, are guaranteed. This data shall be maintained under document revision level control by the manufacturer and be made available to the preparing activity (DLA Land and Maritime-VA) upon request.

3.7 Certificate of compliance. A certificate of compliance shall be required from a manufacturer in order to supply to this drawing. The certificate of compliance (original copy) submitted to DLA Land and Maritime-VA shall affirm that the manufacturer's product meets the performance requirements of MIL-PRF-38534 and herein.

3.8 Certificate of conformance. A certificate of conformance as required in MIL-PRF-38534 shall be provided with each lot of microcircuits delivered to this drawing.

4. VERIFICATION

4.1 Sampling and inspection. Sampling and inspection procedures shall be in accordance with MIL-PRF-38534 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.
<table>
<thead>
<tr>
<th>Test</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Group A subgroups</th>
<th>Device type</th>
<th>Limits</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage 1/2/3/</td>
<td>V_{OUT}</td>
<td>$I_{OUT} = 0.54$ A, $V_{IN} = 18, 28, and 40$ V dc, Either output</td>
<td>1, 2, 3</td>
<td>01</td>
<td>±14.85 - 15.15</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>I_{OUT}</td>
<td>$V_{IN} = 18, 28, and 40$ V dc</td>
<td>1, 2, 3</td>
<td>01</td>
<td>±14.70 - 15.30</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>V_{RIP}</td>
<td>$V_{IN} = 18, 28, and 40$ V dc, $I_{OUT} = 0.54$ A, $BW = 10$ MHz</td>
<td>1, 2, 3</td>
<td>01</td>
<td>80</td>
<td>mV p-p</td>
</tr>
<tr>
<td></td>
<td>VR_{LINE}</td>
<td>$V_{IN} = 18, 28, and 40$ V dc, $I_{OUT} = 0.05$, 0.27, and 0.54 A</td>
<td>1, 2, 3</td>
<td>01</td>
<td>-0.5 +0.5</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>VR_{LOAD}</td>
<td>$V_{IN} = 18, 28, and 40$ V dc, $I_{OUT} = 0.54$ A, $BW = 10$ MHz</td>
<td>1, 2, 3</td>
<td>01</td>
<td>-1.0 +1.0</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>VR_{CROSS}</td>
<td>$V_{IN} = 18, 28, and 40$ V dc</td>
<td>1, 2, 3</td>
<td>01</td>
<td>-3.0 +3.0</td>
<td>%</td>
</tr>
<tr>
<td>Input current</td>
<td>I_{IN}</td>
<td>$I_{OUT} = 0$ A, pin 4 open, Pin 4 shorted to pin 2</td>
<td>1, 2, 3</td>
<td>01</td>
<td>70</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>E_{FF}</td>
<td>$I_{OUT} = 0.54$ A</td>
<td>1, 2, 3</td>
<td>01</td>
<td>76</td>
<td>%</td>
</tr>
<tr>
<td>Isolation</td>
<td>ISO</td>
<td>Input to output or any pin to case except pin 2 at 500 V dc, $T_{C} = +25$°C</td>
<td>1</td>
<td>01</td>
<td>100</td>
<td>MΩ</td>
</tr>
<tr>
<td>Maximum capacitive load 1/6/7/</td>
<td>C_{L}</td>
<td>$I_{OUT} = 0.54$ A, Each output, $T_{C} = +25$°C</td>
<td>1</td>
<td>01</td>
<td>60</td>
<td>µF</td>
</tr>
<tr>
<td>Power dissipation Load fault 1/7/</td>
<td>P_{O}</td>
<td>Short circuit, overload</td>
<td>1, 2, 3</td>
<td>01</td>
<td>9</td>
<td>W</td>
</tr>
<tr>
<td>Current limit point 1/7/</td>
<td>I_{CL}</td>
<td>$V_{OUT} = 90$% of nominal</td>
<td>1, 2, 3</td>
<td>01</td>
<td>105 +167</td>
<td>%</td>
</tr>
<tr>
<td>Switching frequency 1/7/</td>
<td>F_{S}</td>
<td>$I_{OUT} = 0$ A, pin 4 open, Pin 4 shorted to pin 2</td>
<td>1, 2, 3</td>
<td>01</td>
<td>475 -575</td>
<td>kHz</td>
</tr>
<tr>
<td>Output response to step load changes 1/7/</td>
<td>V_{TLD}</td>
<td>50% to/from 100% load</td>
<td>4, 5, 6</td>
<td>01</td>
<td>-300 +300</td>
<td>mV pk</td>
</tr>
<tr>
<td>Recovery time, step load changes 1/7/</td>
<td>T_{TLD}</td>
<td>50% to/from 100% load</td>
<td>4, 5, 6</td>
<td>01</td>
<td>200</td>
<td>µs</td>
</tr>
</tbody>
</table>

See footnotes at end of table.
<table>
<thead>
<tr>
<th>Test Description</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Group A Subgroups</th>
<th>Device Type</th>
<th>Limits</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output response to step line changes 1/7/12/</td>
<td>V_{TLN}</td>
<td>Input step 18 V to/from 40 V I_{OUT} = 0.54 A</td>
<td>4, 5, 6</td>
<td>01</td>
<td>-300</td>
<td>300 mV pk</td>
</tr>
<tr>
<td>Recovery time, step line changes 1/7/11/12/</td>
<td>T_{TLN}</td>
<td>Input step 18 V to/from 40 V I_{OUT} = 0.54 A</td>
<td>4, 5, 6</td>
<td>01</td>
<td>200</td>
<td>µs</td>
</tr>
<tr>
<td>Turn-on overshoot 1/</td>
<td>V_{OS}</td>
<td>10% load, 100% load Enable (pin 4) = on</td>
<td>4, 5, 6</td>
<td>01</td>
<td>1500</td>
<td>mV</td>
</tr>
<tr>
<td>Turn-on delay 1/13/</td>
<td>T_{DLY}</td>
<td>10% load, 100% load Enable (pin 4) = on</td>
<td>4, 5, 6</td>
<td>01</td>
<td>10</td>
<td>ms</td>
</tr>
</tbody>
</table>

1/ Load currents split equally between outputs.
2/ Parameter verified during line and load regulation tests.
3/ Output load currents must be distributed such that at least 20% of the total load current is being provided by one of the outputs.
4/ Guaranteed for a DC to 20 MHz bandwidth. Tested using a 20 kHz to 10 MHz bandwidth.
5/ Cross regulation is measured with 20% rated load on output under test while changing the load on the other output from 20% to 80% of rated.
6/ Capacitive load may be any value from 0 to the maximum limit without compromising DC performance.
7/ Parameter is tested as part of design characterization or after design changes. Thereafter, parameter shall be guaranteed to the limits specified in table I.
8/ Overload power dissipation is defined as the device power dissipation with the load set such that V_{OUT} = 90% of nominal.
9/ Current limit point expressed as a percentage of full rated load current.
10/ Load step transition time ≥ 10 µs.
11/ Recovery time is measured from the initiation of the transient to where V_{OUT} has returned to within ±1% of its steady state value.
12/ Line step transition time ≥ 100 µs.
13/ Turn-on delay time from either a step application of input power or a logic low to a logic high transition on the enable pin (pin 4) to the point where V_{OUT} = 90% of nominal.
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Min (mm)</th>
<th>Max (mm)</th>
<th>Min (in)</th>
<th>Max (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10.8</td>
<td>.425</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>56.00</td>
<td>56.26</td>
<td>2.205</td>
<td>2.215</td>
</tr>
<tr>
<td>D1</td>
<td>43.30</td>
<td>43.56</td>
<td>1.705</td>
<td>1.715</td>
</tr>
<tr>
<td>D2</td>
<td>57.53</td>
<td></td>
<td>2.265</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>33.15</td>
<td>33.40</td>
<td>1.305</td>
<td>1.315</td>
</tr>
<tr>
<td>e1</td>
<td>4.95</td>
<td>5.21</td>
<td>.195</td>
<td>.205</td>
</tr>
<tr>
<td>F</td>
<td>1.14</td>
<td>1.40</td>
<td>.045</td>
<td>.055</td>
</tr>
<tr>
<td>L</td>
<td>6.22</td>
<td>6.99</td>
<td>.245</td>
<td>.275</td>
</tr>
<tr>
<td>L1</td>
<td>5.46</td>
<td>5.72</td>
<td>.215</td>
<td>.225</td>
</tr>
<tr>
<td>q</td>
<td>49.66</td>
<td>49.91</td>
<td>1.955</td>
<td>1.965</td>
</tr>
<tr>
<td>q1</td>
<td>15.11</td>
<td>15.37</td>
<td>.595</td>
<td>.605</td>
</tr>
<tr>
<td>q2</td>
<td>8.89</td>
<td>9.14</td>
<td>.350</td>
<td>.360</td>
</tr>
<tr>
<td>q3</td>
<td>15.24</td>
<td>15.49</td>
<td>.600</td>
<td>.610</td>
</tr>
<tr>
<td>S</td>
<td>3.81</td>
<td>4.06</td>
<td>.150</td>
<td>.160</td>
</tr>
<tr>
<td>Øb</td>
<td>0.64</td>
<td>0.89</td>
<td>.025</td>
<td>.035</td>
</tr>
<tr>
<td>Øp</td>
<td>3.43</td>
<td>3.68</td>
<td>.135</td>
<td>.145</td>
</tr>
</tbody>
</table>

NOTES:
1. The U.S. government preferred system of measurement is the metric SI. This item was designed using inch-pound units of measurement. In case of problems involving conflicts between the metric and inch-pound units, the inch-pound units shall rule.
2. Lead identification for reference only.
3. Case outline weight: 50 grams maximum.

FIGURE 1. Case outline.
<table>
<thead>
<tr>
<th>Device type</th>
<th>01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case outline</td>
<td>X</td>
</tr>
<tr>
<td>Terminal number</td>
<td>Terminal symbol</td>
</tr>
<tr>
<td>1</td>
<td>Positive Input</td>
</tr>
<tr>
<td>2</td>
<td>Case</td>
</tr>
<tr>
<td>3</td>
<td>Input Return</td>
</tr>
<tr>
<td>4</td>
<td>Enable</td>
</tr>
<tr>
<td>5</td>
<td>Negative Output</td>
</tr>
<tr>
<td>6</td>
<td>Output Return</td>
</tr>
<tr>
<td>7</td>
<td>Positive Output</td>
</tr>
</tbody>
</table>

FIGURE 2. Terminal connections.
TABLE II. Electrical test requirements.

<table>
<thead>
<tr>
<th>MIL-PRF-38534 test requirements</th>
<th>Subgroups (in accordance with MIL-PRF-38534, group A test table)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interim electrical parameters</td>
<td>---</td>
</tr>
<tr>
<td>Final electrical parameters</td>
<td>1*, 2, 3, 4, 5, 6</td>
</tr>
<tr>
<td>Group A test requirements</td>
<td>1, 2, 3, 4, 5, 6</td>
</tr>
<tr>
<td>Group C end-point electrical parameters 1/</td>
<td>1, 2, 3, 4</td>
</tr>
<tr>
<td>End-point electrical parameters for Radiation Hardness Assurance (RHA) devices</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

* PDA applies to subgroup 1.
1/ As a minimum, for all Group C testing performed after 1 November 2010 manufacturers shall perform subgroups 1, 2, and 3 from the Group A electrical test table (Table C-Xa of MIL-PRF-38534).

4.2 Screening. Screening shall be in accordance with MIL-PRF-38534. The following additional criteria shall apply:

 (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to either DLA Land and Maritime-VA or the acquiring activity upon request. Also, the test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 of MIL-STD-883.
 (2) TA as specified in accordance with table I of method 1015 of MIL-STD-883.

b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.

4.3 Conformance and periodic inspections. Conformance inspection (CI) and periodic inspection (PI) shall be in accordance with MIL-PRF-38534 and as specified herein.

4.3.1 Group A inspection (CI). Group A inspection shall be in accordance with MIL-PRF-38534 and as follows:

a. Tests shall be as specified in table II herein.
 b. Subgroups 7, 8, 9, 10, and 11 shall be omitted.

4.3.2 Group B inspection (PI). Group B inspection shall be in accordance with MIL-PRF-38534.
4.3.3 **Group C inspection (PI).** Group C inspection shall be in accordance with MIL-PRF-38534 and as follows:

a. End-point electrical parameters shall be as specified in table II herein.

(1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to either DLA Land and Maritime-VA or the acquiring activity upon request. Also, the test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883.

(2) TA as specified in accordance with table I of method 1005 of MIL-STD-883.

(3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

4.3.4 **Group D inspection (PI).** Group D inspection shall be in accordance with MIL-PRF-38534.

4.3.5 **Radiation Hardness Assurance (RHA) inspection.** RHA inspection is not currently applicable to this drawing.

5. **PACKAGING**

5.1 **Packaging requirements.** The requirements for packaging shall be in accordance with MIL-PRF-38534.

6. **NOTES**

6.1 **Intended use.** Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.

6.2 **Replaceability.** Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.

6.3 **Configuration control of SMD’s.** All proposed changes to existing SMD’s will be coordinated as specified in MIL-PRF-38534.

6.4 **Record of users.** Military and industrial users should inform DLA Land and Maritime when a system application requires configuration control and the applicable SMD. DLA Land and Maritime will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DLA Land and Maritime-VA, telephone (614) 692-8108.

6.5 **Comments.** Comments on this drawing should be directed to DLA Land and Maritime-VA, Columbus, Ohio 43218-3990, or telephone (614) 692-1081.

6.6 **Sources of supply.** Sources of supply are listed in MIL-HDBK-103 and QML-38534. The vendors listed in MIL-HDBK-103 and QML-38534 have submitted a certificate of compliance (see 3.7 herein) to DLA Land and Maritime-VA and have agreed to this drawing.

STANDARD MICROCIRCUIT DRAWING

DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990

<table>
<thead>
<tr>
<th>SIZE</th>
<th>5962-04244</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>REVISION LEVEL</td>
<td>SHEET</td>
</tr>
<tr>
<td>C</td>
<td>10</td>
</tr>
</tbody>
</table>

DSCC FORM 2234
APR 97
Approved sources of supply for SMD 5962-04244 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38534 during the next revisions. MIL-HDBK-103 and QML-38534 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DLA Land and Maritime -VA. This information bulletin is superseded by the next dated revisions of MIL-HDBK-103 and QML-38534. DLA Land and Maritime maintains an online database of all current sources of supply https://landandmaritimeapps.dla.mil/programs/Smcr/.

<table>
<thead>
<tr>
<th>Standard microcircuit drawing PIN 1/</th>
<th>Vendor CAGE number</th>
<th>Vendor similar PIN 2/</th>
</tr>
</thead>
<tbody>
<tr>
<td>5962-0424401KXA</td>
<td>52467</td>
<td>S2815D</td>
</tr>
<tr>
<td>5962-0424401KXC</td>
<td>52467</td>
<td>S2815D</td>
</tr>
</tbody>
</table>

1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the Vendor to determine its availability.

2/ Caution. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGE number and address

52467
International Rectifier HiRel Products, Incorporated
2520 Junction Avenue
San Jose, CA 95134

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.